
1. Introduction
Fundamental to the goal of properly modeling climate system dynamics is understanding and quantifying how 
energy is both distributed, and ultimately transferred, across an extremely broad range of dynamically active 
space and time scales. In the atmospheric and ocean context, the most common means of quantifying the 
scale-dependent energy content of a chaotic, turbulent flow field is the energy spectrum (e.g., Charney, 1971; 
Kolmogorov,  1941; Nastrom & Gage,  1983; Taylor,  1938; Yaglom, 2004) given by the Fourier transform of 
two-point (spatial or temporal) velocity correlations.

We will focus in this paper on spatial correlations since the behavior of wavenumber spectra are described by “iner-
tial range” theories predicting spectral slopes and cascades (Vallis, 2006). The standard Fourier approach has had 
great success in providing us with spectral estimates of energy partition (e.g., Ajayi et al., 2021; Stammer, 1997; 
Uchida et al., 2017; Xu & Fu, 2011, 2012) and its straightforward mathematical formulation facilitates the spec-
tral interpretation in the original context, namely statistically homogeneous flows where Fourier decompositions 
are natural. Issues persist, however, in geophysical flows which are statistically inhomogeneous, anisotropic, and 
non-stationary (Uchida, Jamet, et al., 2021). The assumption of homogeneity lies on the fact that a Fourier trans-
form is a global operator over the entire space-time domain of interest. In other words, the Fourier description 
of the field conflates different regimes of an inhomogeneous flow. A notable example is in the separated Gulf 
Stream region where the energetics have been argued to be distinct from the gyre interior (Jamet et al., 2021).

With a growing acknowledgment of the shortcomings of the Fourier approach, there has been a recent effort in the 
geophysical sciences to re-examine the cross-scale energetics. Notable examples are: (a) Aluie et al. (2018), Sadek 
and Aluie (2018), Schubert et al. (2020), Storer et al. (2022), Srinivasan et al. (2022), and Contreras et al. (2022) 
where they implement a spatial filter, (b) Lindborg (2015), Balwada et al. (2016, 2022), LaCasce (2016), Poje 
et al. (2017), and Pearson et al. (2020) where they use structure functions, (c) Jamet et al. (2020) where they 
employ the Green's function, and (d) Uchida, Jamet, et al. (2021) where they use Empirical Orthogonal Functions 
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all with the goal of examining the kinetic energy (KE) spectra and cross-scale transfer in the wavenumber domain. 
The overall consistent picture is that at scales about O(100 km) where the oceanic motions are constrained by 
the Earth's rotation and vertical stratification, KE cascades upscale while KE on the scale of O(10 km) tend to 
cascade downscale due to a loss of balance with the two constraining forces. While all these approaches, includ-
ing the Fourier method, can capture within limits the spatial anisotropy when examined on a two-dimensional 
(2D) wavenumber plane, they lose this information when reduced to one-dimensional (1D) spectral quantities.

Here, we use a wavelet-based technique which yields localized pseudo-Fourier 1D wavenumber spectra capable 
of capturing the local anisotropies in the flow (Daubechies, 1992; Perrier et al., 1995). Wavelets emerged in the 
1980s as a way to analyze time and space series in more local manner than was possible using Fourier techniques 
(e.g., Alvera-Azcárate et al., 2007; Doglioli et al., 2007; Thomson & Emery, 2014; Vasilyev & Paolucci, 1997), 
although strong parallels and connections are to be found between the two methods (Katul & Parlange, 1995; 
Torrence & Compo, 1998). We will argue the localized nature of wavelets allows us to capture the inhomogeneity 
and anisotropy in the flow (Farge, 1992; Horbury et al., 2008). We then apply the wavelet approach to estimate 
the horizontal KE and enstrophy spectral flux from a doubly periodic quasi-geostrophic (QG) flow, and to a flow 
subdomain where periodicity no longer applies. The comparisons illustrate some of the advantages of the wavelet 
approach.

The paper is organized as follows: We describe the QG model and provide an overview of the wavelet method in 
Section 2. Results are given in Section 3 where we compare our wavelet spectra to the canonical Fourier spectra. 
Conclusions are given in Section 4.

2. Theory and Technique
We describe the configuration of our QG model and provide an overview of the wavelet method.

2.1. Description of the Quasi-Geostrophic Simulation

We consider a stochastically forced two-layer QG flow in a doubly periodic f plane domain (i.e., β = fy = 0) under 
rigid-lid and flat bottom conditions. Solutions to the QG potential vorticity (PV) equation

𝑞𝑞𝑗𝑗 𝑡𝑡 + 𝐽𝐽 (𝜓𝜓𝑗𝑗, 𝑞𝑞𝑗𝑗) = −𝑟𝑟𝑏𝑏∇
2𝜓𝜓𝑗𝑗𝛿𝛿𝑗𝑗,2 + (1)

are computed using the pseudo-spectral pyqg model (Abernathey et al., 2022), where δi,j is the usual Kronecker 
delta function and layer numbers are denoted j = 1, 2. The linear bottom drag coefficient is rb = 5.787 × 10 −7 s −1. 
The PV in each layer are

𝑞𝑞1 = ∇2𝜓𝜓1 + 𝐹𝐹1(𝜓𝜓2 − 𝜓𝜓1), (2)

𝑞𝑞2 = ∇2𝜓𝜓2 + 𝐹𝐹2(𝜓𝜓1 − 𝜓𝜓2). (3)

The vortex stretching coefficients are 𝐴𝐴 𝐴𝐴1 =
(2𝜋𝜋∕𝑅𝑅𝑑𝑑)

2

1+𝛿𝛿
, 𝐴𝐴2 = 𝛿𝛿𝐴𝐴1 where the internal Rossby deformation radius 

was prescribed as Rd = 100 km. Each layer thickness is (H1, H2) = (500, 2,000) m respectively, giving δ = H1/
H2 = 0.25. The square domain size is L0 = 1,000 km with the spatial resolution of ∼2 km (512 × 512 grid points). 
In order to prevent the system from equilibrating to the well-known single pair of positive and negative vortices 
(Vallis, 2006), a vertically uniform forcing was introduced as

 = 𝐴𝐴𝑞𝑞𝑤𝑤(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡)𝑡 (4)

where Aq = 10 −15 s −2 is the amplitude and w(t, y, x) is white noise in space-time with zero mean and O(1) ampli-
tude per layer (Figure 1). The quantity w(t, y, x) was computed by taking the inverse Fourier transform of a ring 
in wavenumber space

�̂�𝑤(𝑡𝑡𝑡 𝑡𝑡𝑦𝑦𝑡 𝑡𝑡𝑥𝑥) =

⎧⎪⎨⎪⎩

𝑎𝑎(𝑡𝑡𝑡 𝑡𝑡𝑦𝑦𝑡 𝑡𝑡𝑥𝑥) + 𝑖𝑖𝑖𝑖(𝑡𝑡𝑡 𝑡𝑡𝑦𝑦𝑡 𝑡𝑡𝑥𝑥)𝑡 if (𝑅𝑅𝑑𝑑 + 𝛿𝛿𝑅𝑅)
−1

<
√
𝑡𝑡𝑥𝑥2 + 𝑡𝑡𝑦𝑦2 < (𝑅𝑅𝑑𝑑 − 𝛿𝛿𝑅𝑅)

−1

0𝑡 otherwise

𝑡 (5)
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where k x and k y are the zonal and meridional wavenumbers, respectively, a 
and b are Gaussian random variables in the horizontal wavenumber space 
with zero mean and standard deviation of unity, and δR = 5 km. After taking 
the inverse Fourier transform, the horizontal spatial mean is removed and 
then divided by the mean of the absolute values in the horizontal dimen-
sion in order to have the magnitude on the order of unity. In other words, 
the model is stochastically forced at scales about the Rossby radius uncor-
related in time. No background PV was prescribed. The model was spun up 
for 10 years from a state of rest, at which point area averaged energy had 
equilibrated (not shown), and then run for another 20  years with outputs 
saved every 10 days as instantaneous snapshots. The timeseries of the kinetic 
energy (KE, K = (u ⋅ u)/2) and potential energy (PE, 𝐴𝐴 2(𝜓𝜓1 − 𝜓𝜓2)

2
∕𝑅𝑅𝑑𝑑

2 ) for 
the 20 years of output are given in Figure 2, which mirror each other and 
roughly show an equipartition.

In this simple configuration, it is expected the flow will be both homoge-
neous and isotropic in the horizontal dimensions. Further, classical theory 
predicts the existence of an inverse cascade of KE and hence a −5/3 power 
law at scales larger than the forcing scale, and a forward cascade of enstrophy 
and hence −3 power law at smaller scales that are above the viscous dissipa-
tion scale (Vallis, 2006). In this sense, we “know” what the answer should 
be and can use the results to test the efficacy of the wavelet transform. The 

double periodicity also allows for a straightforward comparison between the wavelet and Fourier approach as no 
windowing of the data is necessary in applying the transforms. We exhibit the top- and bottom-layer PV at the 
last time step of the model's 10th year in Figure 3.

2.2. Spectral Considerations

For the reasons outlined in the introduction, we depart from the classical Fourier approach to compute wavenum-
ber spectra, but do note the utility of that wavenumber spectrum emerges largely from Parseval's equality

∫
𝒙𝒙

𝐾𝐾(𝒙𝒙) 𝑑𝑑𝒙𝒙 =
∫
𝒌𝒌

𝐸𝐸𝐾𝐾 (𝒌𝒌) 𝑑𝑑𝒌𝒌, (6)

where x = (x, y), k = (k x, k y) (e.g., Capet et al., 2008; Scott & Wang, 2005; Uchida et al., 2017). The Fourier 
energy spectrum is given by 𝐴𝐴 2𝐸𝐸𝐾𝐾 (𝒌𝒌) = �̂�𝒖

∗
⋅ �̂�𝒖 where the Fourier transform of the velocity is denoted by the hat 𝐴𝐴 (�̂�𝒖) 

and the superscript * denotes the complex conjugate. This equivalence of the area integrated KE to the wavenum-
ber integrated Fourier spectrum motivates the latter's interpretation as the KE density in the wavenumber domain.

We base our spectral analysis on wavelet decompositions, rather than Fourier transforms, as the space-time local-
ity of wavelets does not require the data to be periodic. Given a function dependent on two spatial dimensions, 
f(x), its continuous wavelet transform is given by Daubechies (1992) and Torrence and Compo (1998)

𝑓𝑓 (𝑠𝑠𝑠 𝑠𝑠𝑠 𝜸𝜸) =
∫
Ω

𝑓𝑓 (𝒙𝒙)
1

𝑠𝑠
𝜉𝜉∗
(
❘

−1
⋅

(
𝒙𝒙 − 𝜸𝜸

𝑠𝑠

))
𝑑𝑑𝒙𝒙𝑠 (7)

Figure 1. Example of how the vertically uniform stochastic forcing 𝐴𝐴  looks 
like for an arbitrary time step.

Figure 2. Vertically and domain averaged kinetic energy (black solid) and (available) potential energy (red dashed).
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where the integration is taken over the whole domain of interest Ω and 𝐴𝐴 ❘

−1 is the inverse of the rotation matrix

R−1 =
⎛

⎜

⎜

⎝

cos (�) sin (�)

−sin (�) cos (�)

⎞

⎟

⎟

⎠

, (8)

for rotation through an angle ϕ relative to the x axis. The quantity s is referred to as the “scale,” γ (∈R 2) are the 
two-dimensional coordinates of interest, ξ(x) is the so-called “mother” wavelet and 𝐴𝐴 𝐴𝐴

(
❘

−1
⋅ (𝒙𝒙 − 𝜸𝜸)∕𝑠𝑠

)
 in Equa-

tion 7 are the daughter wavelets. The quantities 𝐴𝐴 𝑓𝑓  are called the wavelet coefficients. Note that the field of wavelet 
coefficients is a filtered version of the original data.

Subject to the “admissibility condition” CΞ < ∞, the original function f can be reconstructed from the wavelet 
coefficients (Daubechies, 1992; Torrence & Compo, 1998)

𝑓𝑓 (𝒙𝒙) =
1

𝐶𝐶Ξ ∫
𝜸𝜸
∫
𝑠𝑠
∫
𝜙𝜙

𝑓𝑓 (𝑠𝑠𝑠 𝜙𝜙𝑠 𝜸𝜸)
1

𝑠𝑠4
𝜉𝜉

(
❘

−1
⋅

(
𝒙𝒙 − 𝜸𝜸

𝑠𝑠

))
𝑑𝑑𝜙𝜙 𝑑𝑑𝑠𝑠 𝑑𝑑𝜸𝜸. (9)

If 𝐴𝐴 Ξ̂(𝒌𝒌) is the Fourier transform of the mother wavelet, then

𝐶𝐶Ξ =
∫
𝒌𝒌

Ξ̂∗Ξ̂

𝒌𝒌 ⋅ 𝒌𝒌
𝑑𝑑𝒌𝒌. (10)

The so-called “admissibility condition” implies that the mother wavelet defines a well-behaved class of wavelet 
transforms. Many functions satisfy Equation 10 provided they have zero mean

∫
𝒙𝒙

𝜉𝜉(𝒙𝒙)𝑑𝑑𝒙𝒙 = 0. (11)

For current purposes, we will employ the so-called Morlet wavelet (Gabor, 1946; Morlet et al., 1982), that is,

𝜉𝜉(𝒙𝒙) =
(
𝑒𝑒−2𝜋𝜋𝜋𝜋𝒌𝒌0⋅𝒙𝒙 − 𝑐𝑐0

)
𝑒𝑒
−
𝒙𝒙⋅𝒙𝒙

2𝑥𝑥2
0 , (12)

where c0 is a constant included to ensure that Equation 11 is met. The central wavenumber k0 is taken to be 
k0 = (k0, 0) and the quantity x0 is a reference length scale, here taken to be the Rossby radius (x0 = 100 km), viz. 
the central length scale of the mother wavelet. We will choose k0 = 1/x0, in which case the constant c0 is quite 
small and generally ignored (i.e., c0 = 0), a convention adopted in this paper. Plots of Equation 12 are found in 
Figure 4. Note that the Morlet mother wavelet consists of a wave of wavelength x0 inside a Gaussian envelope of 

Figure 3. The potential vorticity at the last time step of the 10th simulated year in the top and bottom layer. Note the order of magnitude difference in the two panels.
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decay scale 𝐴𝐴
√
2𝑥𝑥0 . Thus for s = 1 and ϕ = 0, the wavelet coefficient produced by this transformation comments on 

the presence of the wavenumber k0 = (k0, 0) at location γ in the original data. Increasing the rotation angle ϕ and 
filtering returns information about the presence of the same wavelength at angle −ϕ. Finally allowing s to vary 
modifies the filter so that the primary wavenumber of the filter is k = 1/(sx0). The Morlet wavelet coefficient can 
thus be thought of as a “local” Fourier transform at wavenumber 𝐴𝐴 𝒌𝒌

𝖳𝖳

0
⋅ ❘

−1
(𝜙𝜙)∕𝑠𝑠 , where the superscript 𝐴𝐴 𝖳𝖳 denotes a 

transpose. We note that Morlet wavelets are not orthonormal. However, this does not hinder our results as we are 
focused on continuous wavelet transforms.

From the properties of wavelets, it is possible to show they satisfy a generalized Parseval's equality (cf. Appen-
dix A, Chen & Chu, 2017; Daubechies, 1992; Torrence & Compo, 1998), namely

∫
𝒙𝒙

𝑓𝑓 (𝒙𝒙)𝑔𝑔(𝒙𝒙)𝑑𝑑𝒙𝒙 =
1

𝐶𝐶Ξ ∫
𝜙𝜙
∫
𝑠𝑠
∫
𝜸𝜸

𝑓𝑓�̃�𝑔∗

𝑠𝑠3
𝑑𝑑𝜸𝜸 𝑑𝑑𝑠𝑠 𝑑𝑑𝜙𝜙𝑑 (13)

Note, if f = g, then the variance in f is captured via

∫
𝒙𝒙

𝑓𝑓 2(𝒙𝒙)𝑑𝑑𝒙𝒙 =
1

𝐶𝐶Ξ ∫
𝜙𝜙
∫
𝑠𝑠
∫
𝜸𝜸

𝑓𝑓 ∗𝑓𝑓

𝑠𝑠3
𝑑𝑑𝜸𝜸 𝑑𝑑𝑠𝑠 𝑑𝑑𝜙𝜙𝑑 (14)

which identifies the quantity

�̃�𝐸𝑆𝑆 (𝜸𝜸, 𝜙𝜙, 𝜙𝜙) =
1

𝐶𝐶Ξ

𝑓𝑓 ∗𝑓𝑓

𝜙𝜙3
, (15)

as the energy density of f in wavelet space s and direction ϕ. In other words, Equation 15 gives a spectral energy 
estimate for f that belongs to location γ.

At this point, the scale factor in Equation 15, s, is non-dimensional. It is more traditional in fluid mechanics to 
discuss energy spectra in terms of wavenumber. As pointed out above, the effective wavenumber associated with s 
is k = 1/(sx0) = 1/s0, where the quantity s0 has units of length. One can transform Equation 14 from s to s0 space as

∫
𝒙𝒙

𝑓𝑓 2(𝒙𝒙)𝑑𝑑𝒙𝒙 =
1

𝐶𝐶Ξ ∫
𝜙𝜙
∫
𝑠𝑠0
∫
𝜸𝜸

𝑓𝑓 ∗𝑓𝑓

𝑠𝑠3
0

𝑥𝑥2

0
𝑑𝑑𝜸𝜸 𝑑𝑑𝑠𝑠0 𝑑𝑑𝜙𝜙𝑑 (16)

and finally to wavenumber, k = 1/s0, space, ending with

∫
𝒙𝒙

𝑓𝑓 2(𝒙𝒙)𝑑𝑑𝒙𝒙 =
1

𝐶𝐶Ξ ∫
𝜙𝜙
∫
𝑘𝑘
∫
𝜸𝜸

𝑓𝑓 ∗𝑓𝑓𝑓𝑓2

0
𝑘𝑘 𝑑𝑑𝜸𝜸 𝑑𝑑𝑘𝑘 𝑑𝑑𝜙𝜙𝑑 (17)

Figure 4. Structure of the mother Morlet wavelet Equation 12 for c0 = 0. A contour plot of the real part of the mother Morlet wavelet is shown in the left panel. Zonal 
transects of the real and imaginary parts at y = 500 km appear in the right panel. The reference lengthscale is x0 = 100 km.
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If we now produce wavelet coefficients for the stream function and PV from time step n of our simulation, and 
manipulate them appropriately, we obtain

�̃�𝐸𝑛𝑛

𝐾𝐾
(𝜸𝜸, 𝜙𝜙, 𝜙𝜙) =

1

𝐶𝐶Ξ


[
(−�̃�𝜓∗)𝑞𝑞

]
𝑥𝑥2

0
𝜙𝜙, (18)

�̃�𝑍𝑛𝑛

𝐾𝐾
(𝜸𝜸, 𝜙𝜙, 𝜙𝜙) =

1

𝐶𝐶Ξ



[
𝑞𝑞∗𝑞𝑞

2

]
𝑥𝑥2

0
𝜙𝜙, (19)

where 𝐴𝐴 [⋅] is the real part of the quantity ⋅, as a measure of energy and enstrophy density in wavelet transform 
space (cf. Uchida, Deremble, & Penduff, 2021; Vallis, 2006). Each value of 𝐴𝐴 �̃�𝐸𝑛𝑛

𝐾𝐾
 and 𝐴𝐴 �̃�𝑍𝑛𝑛

𝐾𝐾
 is a random number (as 

they are associated with each realization of random eddies). Ensemble averaging those values where the members 
are snapshots at intervals of 30 days, returns an estimate of the energy spectrum as a function of wavenumber k 
in direction ϕ. The interval of 30 days ensures temporal decorrelation between the density estimates. The spatial 
locality of the mother wavelet permits the interpretation of 𝐴𝐴 �̃�𝐸𝐾𝐾 (𝜸𝜸, 𝜙𝜙, 𝜙𝜙) = �̃�𝐸𝑛𝑛

𝐾𝐾
(𝜸𝜸, 𝜙𝜙, 𝜙𝜙) as the local energy spec-

trum at location γ. The same argument applies for enstrophy.

3. Results
We have opted for this work to calculate the wavelet coefficients explicitly, rather than by the frequently used 
Fourier transform method, in view of our eventual interest in applications to realistic aperiodic and inhomoge-
neous settings, such as the North Atlantic basin. The wavelet transform appropriate to the angle ϕ was taken 
between [0, −π) with the azimuthal resolution of π/12 radian (=15°). The sum of the product of the wavelet and 
the data spatially integrated is the wavelet coefficient at the location γ. In what follows, we consider the quasi 
two-dimensional flow in the top layer (j = 1).

3.1. Spectra Over the Entire Domain

We examine and intercompare the wavelet and Fourier wavenumber spectra and spectral flux over the entire 
domain in this section. As the simulated domain is doubly periodic and on a uniform grid, it is an ideal case for 
the Fourier method; no windowing nor spatial interpolation are applied prior to taking the transform. Although 
one of the strengths of the wavelet approach is in negating the necessity of periodicity, we have chosen such an 
idealized configuration to test the wavelet method against the Fourier method where the latter would provide the 
“true” spectra.

While the scaling factor s provides flexibility in defining the wavelet wavenumber, as opposed to the Fourier 
approach where, to employ Fast Fourier Transform algorithms, the resolution is constrained to 1/L with L 
(=1,000 km) being the domain size, we start by computing the wavelet spectra at the center location γ = γ0 = (yc, 
xc) = (500, 500) km and use the same wavenumbers as the Fourier spectra (kF). We see from Figure 5 that the 
agreement between the Fourier and wavelet method is excellent (red solid and black dashed curves, respectively) 
for both the energy and enstrophy spectra at scales above the dissipation scale.

We also show in Figure 5 a case where we arbitrarily increase the wavelet wavenumber resolution at scales larger 
than 50 km where the inverse cascade is expected (black dashed curve); we take s0 = [2Δx, …, 5x0] monotonically 
spaced with 30 increments, which is trimmed for scales smaller than 50 km, and concatenate this with the Fourier 
length scales below 50 km. Features at the lowest wavenumbers (i.e., largest spatial scales) are better captured 
compared to the red solid and black dotted curves in Figure 5 where the Fourier wavenumber resolution is low. 
This is beneficial as the scales of interest in the oceanographic context are often length scales about and larger 
than the Rossby radius, associated with mesoscale eddies (Chelton et al., 1998, 2011). The enstrophy spectra are 
slightly steeper than k −1 at scales below the Rossby radius (Figure 5b), which is consistent with the KE spectral 
slope also being steeper than −3. We attribute the steeper slope to the excessive PV variance introduced by 
the  stochastic forcing cascading downscale (cf. Figure 6b) and the sporadic emergence of coherent structures 
(e.g., Figure 3 left panel, Benzi et al., 1988; Maltrud & Vallis, 1991). While the spectral slopes do not match 
exactly to what is expected from the inertial range theory, it is known that the spectral slopes are sensitive to the 
model configuration of forcing and dissipation (Maltrud & Vallis, 1991), and this does not diminish the agree-
ment between the Fourier and wavelet spectral estimates.

Using the wavelet transformation, we can also diagnose the KE and enstrophy spectral flux as
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�̃�𝜀𝐾𝐾 (𝜸𝜸, 𝜙𝜙, 𝜙𝜙) = −
1

𝐶𝐶Ψ ∫
𝜙𝜙𝑘𝑘𝑘



[
�̃�𝑢∗ ̃(𝒖𝒖 ⋅ ∇𝑢𝑢) + �̃�𝑣∗ ̃(𝒖𝒖 ⋅ ∇𝑣𝑣)

]
𝑥𝑥2

0
𝑘𝑘 𝜅𝜅𝑘𝑘, (20)

�̃�𝜂𝐾𝐾 (𝜸𝜸, 𝜙𝜙, 𝜙𝜙) = −
1

𝐶𝐶Ψ ∫
𝜙𝜙𝑘𝑘𝑘



[
𝑞𝑞∗ ̃(𝒖𝒖 ⋅ ∇𝑞𝑞)

]
𝑥𝑥2

0
𝑘𝑘 𝜅𝜅𝑘𝑘, (21)

where negative values imply an inverse cascade toward larger scales and positive values a forward cascade toward 
smaller scales (Arbic et al., 2013; Khatri et al., 2018).

Comparisons of the spectral fluxes computed using wavelets at a single point (black), standard Fourier spectra 
(red) and spatial averages of point-wise wavelets (blue) are shown in Figures 6a and 6b. All approaches clearly 
indicate a broad forward enstrophy cascade range at scales smaller than the forcing scale/Rossby radius. Simi-
larly, there is general agreement on the existence of an inverse energy cascade in the limited range of scales larger 
than the forcing scale. The lower panels in Figure 6 show the azimuthally integrated spectral transfers, that is, the 
integrand of Equations 20 and 21.

In contrast to calculations of the spectra themselves shown in Figure 5, the spectral fluxes computed from wavelet 
data taken at a single spatial point differ significantly from the global Fourier estimates. As described below, the 
wavelet spectral flux estimates are highly sensitive to the amount of spatial and temporal averaging employed, 
despite the homogeneity and statistical stationarity of the flow field. This sensitivity arises because the flux is the 
transfer cumulatively integrated from the largest wavenumbers toward smaller wavenumbers (i.e., Equation 20) 
so values at high wavenumbers can have a substantial effect on the flux at low wavenumbers.

The 95% boot-strapped confidence intervals, computed by randomly re-sampling spectral quantities 9,999 times, 
are shown by shading in Figure 6. In all cases, single-point wavelet flux and transfer estimates are highly uncer-
tain, while Fourier estimates are not.

We argue this dependency on averaging is associated with the fact that the wavelet estimate of the spectral transfer 
only incorporates spatially local information while the Fourier approach effectively yields a domain-averaged 
estimate. Namely, the global two-point correlation function, stemming from the assumption of homogeneity in 
the Fourier approach, acts as a spatial averaging operator (cf. Uchida, Jamet, et al., 2021). For this setting, this 
assumption is valid, hence the superior performance in flux estimation of the Fourier approach. Note, however, 
that the transfer estimates emerging from the wavelet approach, while noisy, do largely agree with those of the 
Fourier approach. It is in the integration of the transfers where initial noise in the estimates can result in an erro-
neous outcome (compare black and blue curves in Figure 6d).

Figure 5. The isotropic (azimuthally integrated) energy and enstrophy wavenumber spectra of the top layer (a, b). For the wavelet approach, spectra at γ = γ0 where 
the wavenumbers are identical to the Fourier wavenumbers (𝐴𝐴 𝐴𝐴0 = 𝑘𝑘−1

𝐹𝐹
 ; black dotted) and where the wavenumber resolution is increased at scales larger than 50 km 

(black dashed) are given. The wavenumber are shown in the lower x axes and corresponding lengthscale in the upper axes. The colored shadings indicate the 95% 
boot-strapped confidence interval and are shown for the Fourier spectra (red solid) and wavelet spectra with increased wavenumber resolution (black dashed) although 
the intervals are narrower than the curves themselves.

 19422466, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003399 by C
ochrane France, W

iley O
nline L

ibrary on [22/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

UCHIDA ET AL.

10.1029/2022MS003399

8 of 14

The expectation is that if we were to take the explicit wavelet transform at every single grid point, the spatial 
average of the wavelet spectral flux would converge to the Fourier approach. We examined this by estimating 
the wavelet spectral flux and transfer at every five grid points in the diagonal direction (i.e., every ∼14 km) up 
to 125 grid points apart (∼280 km) from the center point (101 locations in total along y − yc = ±(x − xc)). The 
spatial average of them shown as blue curves in Figure 6 all come closer to the Fourier estimate than the black 
curves. Comparisons of the domain averaged wavelet estimates to those derived via standard Fourier approach, 
both in their mean and confidence intervals, significantly improve when averaged over 101 locations (𝐴𝐴 ⟨�̃�𝜀𝐾𝐾⟩, ⟨�̃�𝜂𝐾𝐾⟩ 
where 〈⋅〉 is the averaging operator over 101 locations; blue curves in Figures 6b and 6d). The Fourier and wavelet 
spectral transfer and flux also no longer differ at the 95% confidence interval.

We also exhibit the angular orientation of the spectral flux, which the wavelet approach can extract via its depend-
ence on the angle ϕ (Figure 7). The flux shown in Figures 6a and 6b as blue dashed curves are the azimuthal inte-
gration of angle-dependent fluxes exhibited in Figure 7. As the simulated QG flow is configured to be isotropic, the 

Figure 6. The isotropic (azimuthally integrated) kinetic energy and enstrophy wavenumber spectral flux (a, b) and transfer (c, d), respectively. The Fourier method is 
shown in red and the wavelet approach at γ = γ0 with wavenumbers identical to the Fourier wavenumbers in dotted 𝐴𝐴

(
𝑠𝑠0 = 𝑘𝑘−1

𝐹𝐹

)
 and the case with increased wavenumber 

resolution at smaller wavenumbers in dashed curves, respectively. The black curves show the wavelet flux and transfer at γ = γ0, while the blue curves show them 
averaged over the 101 locations 𝐴𝐴 (⟨�̃�𝜀𝐾𝐾⟩, ⟨�̃�𝜂𝐾𝐾⟩) . The colored shadings indicate the 95% boot-strapped confidence interval and are shown for the Fourier spectra (red solid) 
and wavelet spectra with increased wavenumber resolution (black and blue dashed curves). The wavenumber is shown in the lower x axes and corresponding lengthscale 
in the upper axes.
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anisotropy seen in the spectral flux are statistically insignificant within the 95% boot-strapped confidence interval; 
the KE flux exhibits an inverse cascade and enstrophy flux a foward cascade across all angles (Figures 7b and 7d).

We are thus led to be cautious interpreting single-point wavelet spectral calculations when applied to what might 
be termed higher order quantities, like spectral flux. However, we also point out this is a sword that cuts in both 
directions. The accuracy of the Fourier flux estimates depends strongly on their area-wide integrative effect in 
this homogeneous setting. Were the flow not homogeneous, the integrative character of the Fourier approach 
would obscure the meaning of the result.

3.2. Spectra Over a Non-Periodic Subdomain

We now examine the spectra taken over the subdomain given by y = 200–800 and x = 200–800 km in anticipa-
tion of realistic data where periodicity is never satisfied. As the data are no longer periodic, the Fourier approach 
requires the data to be windowed. This will highlight the strength of the locality in the wavelet approach where 
windowing of the data is unnecessary. Prior to taking the Fourier transforms, we applied Hann windows (Arbic 
et al., 2013; Uchida et al., 2017; Uchida, Jamet, et al., 2021) and then corrected for their amplitude. Comparing 

Figure 7. The angular dependence of the kinetic energy and enstrophy spectral flux from the wavelet approach plotted radially averaged over the 101 locations 
(𝐴𝐴 ⟨�̃�𝜀𝐾𝐾 (𝜙𝜙𝜙 𝜙𝜙)⟩𝜙 ⟨�̃�𝜂𝐾𝐾 (𝜙𝜙𝜙 𝜙𝜙)⟩ ; a, c). The radial axes are the wavenumbers in logarithmic scaling with the increased wavenumber resolution. The fluxes are symmetric about the 
origin so we only show for angles [0, −π). The 95% boot-strapped confidence intervals are given for four arbitrary angles (b, d).
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Figures 5 and 8, we see that the spectral estimates are still robust. The low resolution at lower wavenumbers from 
the Fourier method makes it difficult to detect the spectral shape at scales above ∼100 km due to the domain size 
being small; there are only two wavenumber points at scales larger than the Rossby radius (red curves in Figure 8). 
The wavelet approach, on the other hand through its flexibility in s, still captures a smooth spectral estimate; the 
scaling for the wavelet approach was adjusted to s0 = [2Δx, …, 3x0] over 30 monotonic increments in order to 
account for the smaller domain and then replaced by the Fourier wavenumber at scales smaller than 50 km.

Regarding the spectral transfer, the Fourier approach is significantly affected by the tapering at the lowest wave-
numbers (red curves in Figures 6c, 6d, 9c,and 9d) but the wavelet approach is still able to capture the change in 
sign in its curvature (blue dashed curves in Figures 6c, 6d, 9c, and 9d). The enstrophy spectral flux and transfer 
tend to be particularly sensitive to the local nature of wavelet transforms. Similar to Figure 6, we see a significant 
improvement in the wavelet estimates both in their mean and confidence intervals when averaged over 101 loca-
tions, particularly for enstrophy (𝐴𝐴 ⟨�̃�𝜂𝐾𝐾⟩ ; blue curves in Figures 9b and 9d).

4. Conclusions and Discussion
In this study, we have described and documented a wavelet-based technique for spectral analyses in an ocean-
ographic context. The wavelet approach employed here, through its dependence on a scale parameter s, returns 
effectively a one-dimensional (1D) spectral estimate, and its incorporating of two-dimensional data allows for 
information regarding local anisotropies through its angular dependency ϕ (Figure 7).

We have demonstrated its utility by applying it to a doubly periodic, two-layer, QG simulation. The flow analyzed 
in this study is highly idealized being spatially isotropic and homogeneous in the horizontal dimensions. The ideal-
ized setting, however, is expected to yield known spectral cascades, so it can be used as a test bed for the wavelet 
approach. The agreement between the wavelet and Fourier approach, particularly for the spectra (Figures 5 and 8), 
encourages the usage of wavelets with its additional strengths of being able to capture the local features of the flow. 
While numerically efficient algorithms exist to take the wavelet transform (coined as Fast Wavelet Transforms; e.g., 
Beylkin et al., 1991), they face the same conundrum as FFTs requiring: (a) periodic boundary conditions and (b) 
filling in missing data points. We have, therefore, taken the approach of explicitly computing the wavelet transform 
Equation 7, which negates the two necessities and will benefit realistic settings such as the North Atlantic basin. The 
robustness of the spectra is comforting, but we also emphasize the need for caution when computing higher-order 
spectral quantities, like spectral fluxes, which involve spatial derivatives. The disagreement arises from the local 
nature of wavelets; the Fourier method incorporates spatially global information and hence can be thought as a spatial 
average of spectral estimates. This is evident from the fact that upon spatially averaging the wavelet spectral transfer 
over multiple locations, the confidence interval improved and its mean converged toward the Fourier estimate.

Our work is complementary to a growing list of literature on spectral methods alternative to the Fourier approach: 
Aluie et al. (2018), Sadek and Aluie (2018), Schubert et al. (2020), Storer et al. (2022), and Contreras et al. (2022) 
where they use a spatial filter to examine the KE spectra and cross-scale transfer, Lindborg  (2015), Balwada 

Figure 8. Same as Figure 5 but for the subdomain of y = 200–800 and x = 200–800 km. The confidence intervals are again 
narrower than the curves themselves.
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et al. (2016, 2022), LaCasce (2016), Poje et al. (2017), and Pearson et al. (2020) where they implement structure 
functions, Jamet et al. (2020) where they employ the Green's function, and Uchida, Jamet, et al. (2021) where 
they use Empirical Orthogonal Functions. Barkan et al. (2021) and Srinivasan et al. (2022) apply the filtering 
method in both the spatiotemporal dimensions. Liang and Anderson (2007), Liang (2016), and Yang et al. (2021) 
are also interesting attempts in implementing a multiscale window transform to examine the energy exchange 
across spatiotemporal scales by decomposing the flow with a set of orthogonal windows. Here, we have docu-
mented the wavelet-based cross-scale energetics in the spectral context. While the form of the Parseval's equality 
will slightly change, namely in the power of scaling s, the wavelet method can also be extended to estimating 
frequency-wavenumber spectra (e.g., Torres et al., 2018; Uchida et al., 2019); this will allow us to decompose the 
balanced and unbalanced motions in non-periodic settings.

Appendix A: Parseval's Equality
In this appendix, we review the Parseval's equality for two-dimensional wavelet transforms (Chen & Chu, 2017; 
Daubechies, 1992; Mallat, 1999; Torrence & Compo, 1998), that is,

∫
𝑓𝑓 𝑓𝑓 𝑓𝑓𝒙𝒙 =

1

𝐶𝐶Ξ ∭
𝑓𝑓 �̃�𝑓∗ 1

𝑠𝑠3
𝑓𝑓𝜸𝜸𝑓𝑓𝑠𝑠𝑓𝑓𝑑𝑑𝑑 (A1)

Using Equation 9, the right-hand side can be expanded as

Figure 9. Same as Figure 6 but for the subdomain of y = 200–800 and x = 200–800 km.
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∭ �̃ �̃∗ 1
�3

������ = ∭ 1
�5

∫� � (�)�
∗
(

R−1 ⋅
(� − �

�

))

�� ∫� �
∗(�)�

(

R−1 ⋅
(� − �

�

))

�� ������

= ∫� ∫� � �∗ ∭ 1
�5
�∗
(

R−1 ⋅
(� − �

�

))

�
(

R−1 ⋅
(� − �

�

))

������ �� �� .
 (A2)

Now, consider the wavelet transform of the Dirac delta function

�̃ = ∫� �(� − �′) 1
�
�∗
(

R−1 ⋅
(� − �

�

))

��

= 1
�
�∗
(

R−1 ⋅
(

�′ − �
�

))

.
 (A3)

Hence, the inverse wavelet transform becomes

� = 1
�Ξ

∭ �̃ 1
�4
�
(

R−1 ⋅
(� − �

�

))

������

= 1
�Ξ

∭ 1
�5
�∗
(

R−1 ⋅
(

�′ − �
�

))

�
(

R−1 ⋅
(� − �

�

))

������.
 (A4)

Plugging Equation A4 into Equation A2 yields

∭
𝑓𝑓 �̃�𝑓∗ 1

𝑠𝑠3
𝑑𝑑𝜸𝜸𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑 = 𝐶𝐶Ξ

∫
𝒙𝒙

𝑓𝑓 𝑓𝑓∗ 𝑑𝑑𝒙𝒙, (A5)

and we obtain Equation A1.

Data Availability Statement
The wavelet transforms were taken using the xwavelet Python package (Uchida & Dewar, 2022) and Fourier 
transforms using the xrft Python package (Uchida et al., 2022). The pyqg model is available through Github 
(Abernathey et al., 2022). Jupyter notebooks used to run the pyqg simulation and conduct analyses are available 
via Github (Uchida, 2023).
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