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a b s t r a c t 

Ocean circulation modeling requires parameterizations of sub-grid scale processes, which in turn involves 

two separate issues. First, the parameterization should mirror the effect of important sub-grid dynamics 

and second, constants and boundary conditions as required by the parameterization must be determined. 

In modern ocean circulation modeling, many parameterizations take the form of viscous operators with 

poorly known coefficients, and the boundary conditions options are free-slip, partial-slip or no-slip, suit- 

ably adjusted for the order of the operator. The extent to which viscous operators are dynamically apt 

is unclear and there is virtually no dynamical guidance on how to choose between the boundary con- 

ditions. Often the decision about the suitability of the parameterizations and the boundary conditions is 

made based on qualitative characteristics of the solution, which is somewhat subjective. Here, a dynami- 

cal boundary layer model is developed that explicitly determines the boundary potential vorticity fluxes 

resulting from the sub-grid scale interactions of the resolved flow with the boundaries. When applied to 

a quasi-geostrophic model, comparisons of model evolution with high resolution primitive equation sim- 

ulations are favorable. The recipe outlined here, while far from a complete parameterization of boundary 

dynamics, represents a step toward resolving the issues currently surrounding sub-grid scale parameteri- 

zation. The results also argue that boundary dynamics naturally dissipate balanced energy and are likely 

to represent a principal means by which the oceanic mesoscale energy budget is balanced. 

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Ocean circulation models employ sub-gridscale parame-

erizations often represented in the momentum equations as

iscous-like operators where the order of the operator can be

igher than second. While there are good numerical reasons for

his choice, there is no real dynamical justification for it. Poorly

nown parameters are involved in them and, perhaps even more

mportantly, several different lateral boundary condition choices

re available for them. It is a matter of well-known numerical

xperience that the nature of mature model circulation is quite

ensitive to the sub-gridscale details, affecting such important

eatures as Gulf Stream separation ( Bryan et al., 2006; Schoonover

t al., 2017 ) . Indeed, the choices for parameter values and bound-

ry conditions are often made based on which combination results

n qualitative model features, such as Gulf Stream separation, that

re most realistic. Guidance in sub-gridscale parameterization from

ynamical considerations would be of great value, but this is an

rea in which progress has been slow. The purpose of this paper
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s to contribute to this topic through examination of a category

f boundary mechanics that results in a viscous-like control on

nterior flows. In contrast to existing parameterizations, the results

re relatively insensitive to details of the implementation. We

uggest that the approach taken here is a step toward a more

omplete dynamically based prescription for interior-boundary 

nteractions. A second result is that boundary dynamics are likely

o be a significant sink of interior mesoscale energy. 

.1. Background 

The problem of parameterization and boundary condition

hoices in ocean circulation models arose with the earliest dynam-

cal circulation models. Stommel (1948) avoided lateral boundary

onditions by the use of a bottom drag; Munk (1950) with a

rictional operator used no-slip boundary conditions. In both cases,

he parameterizations and boundary conditions were central to the

olutions so obtained. The first attempts at numerical circulation

odeling were based in quasi-geostrophic (qg) dynamics and a

ariety of viscous operators and boundary condition combinations

ere attempted. A clear demonstration of the solution depen-

ence on the choice of either partial slip or no-slip appears in

http://dx.doi.org/10.1016/j.ocemod.2017.09.003
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2017.09.003&domain=pdf
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Haidvogel et al. (1992) . While the no-flux boundary condition is

appropriate for the flow normal to the boundary, the physically

suggested no-slip boundary condition on the tangential flow is

less clear due to model discretization ( Adcroft and Marshall, 1998 ).

The manner in which the free-slip/no-slip choice affects the in-

terior in realistic models with irregular coastlines is also an issue

( Adcroft and Marshall, 1998 ). 

Most modern ocean simulations are based on the prim-

itive equations which, while dynamically richer than qg,

still exhibit a strong dependence on boundary interactions.

Bryan et al. (2006) systematically investigated parameterization

and resolution sensitivities of a North Atlantic circulation model

and illustrated the dependency of Gulf Stream separation to

them. Here the type of boundary condition was held fixed (they

employed free-slip), however the values and grid-scalings of the

viscous coefficients result in vastly different behaviors. The effects,

being centered on Gulf Stream separation, demonstrate the impor-

tance of both the explicit boundary condition and the amplitude

of the various parameters. 

Most modern circulation models employ a combination of

second (Laplacian) and higher order sub-grid scale parameteriza-

tions with parameter values tuned to provide a circulation close

to that of the real ocean (see Chassignet and Garraffo, 2001 and

Madec, 2006 ). While the results are often quite pleasing according

to this metric, it is recognized that there is a real need for a better

dynamical understanding of boundary physics in order to remove

some of this ambiguity. 

The model developed in this paper is offered as a step in this

direction. The analysis is strongly rooted in qg dynamics, in which

the most significant shortcoming of the boundaries relative to the

real ocean is the restriction to vertical walls. However, the physics

that arise involve interior flow interaction with boundary waves

and, as such, clear dynamical analogs exist with wave types be-

longing to more complicated topography and sloping boundaries.

In addition, favorable comparisons with primitive equation results

suggest that the involved dynamics transcend qg parameteric lim-

itations. We propose that qg has in this case illuminated processes

relevant to the primitive equations, as it has done frequently in

other past settings, such as eddy dynamics. In the present setting,

it is connections between small scale boundary dynamics and the

interior balanced flow that have been captured in the dynamical

boundary layer model (DBM) appended to the interior equations.

This study builds on Dewar et al. (2011) where the boundary

dynamics were explored in isolation from their feedback onto

the interior. The present study seeks to close the problem by

properly coupling the DBM and the interior so that they evolve

simultaneously. 

While some degree of success has been achieved in this ex-

ercise, the parameterization is by no means complete. Rather,

one aspect, hopefully a significant one, of boundary dynamics is

extracted from the complete physical system and clarified. 

Model development is given in Section 2 , and is followed

by comparisons between a suite of models in the next section.

Impacts on the system energetics are investigated in Section 4 and

the paper ends with a summary and discussion of future work. 

2. Model development 

We start with the hydrostatic equations written in density

coordinates 

∂ 

∂t 
u + u 

∂ 

∂x 
u + v 

∂ 

∂y 
u + H 

∂ 

∂ρ
u − f v = − ∂ 

∂x 
M + X (1a)

∂ 

∂t 
v + u 

∂ 

∂x 
v + v 

∂ 

∂y 
v + H 

∂ 

∂ρ
v + f u = − ∂ 

∂y 
M + Y (1b)
i  
∂ 

∂ρ
M = gz (1c)

∂ 

∂t 

∂ 

∂ρ
z + ∇ ·

(
u 

∂ 

∂ρ
z 

)
+ 

∂ 

∂ρ
e = 0 (1d)

here u, v are horizontal velocities, f the Coriolis frequency, ρ
ensity, z depth of a density surface, ( X, Y ) ’viscous’ effects and M

he Montgomery potential, 

 = p + (ρ − ρo ) gz (2)

ith p dynamic pressure and ρo a reference density. The quantity

 represents the non-conservative processes affecting density, i.e. 

d 

dt 
ρ = H (3)

nd is related to the entrainment, e , by 

 = H 

∂ 

∂ρ
z (4)

he depth variable, z , is broken into a background part dependent

nly on ρ and a fluctuation 

 = z(ρ) + z ′ (x, y, ρ, t) (5)

n keeping the usual quasi-geostrophic (qg) approach, z (analogous

o N 

2 in a level model) is assumed known. The equations are now

caled in the classical qg way. The result is (
∂ 

∂t 
u + u 

∂ 

∂x 
u + v 

∂ 

∂y 
u + �H 

∂ 

∂ρ
u 

)
− f v = − ∂ 

∂x 
M + X o X (6a)

(
∂ 

∂t 
v + u 

∂ 

∂x 
v + v 

∂ 

∂y 
v + �H 

∂ 

∂ρ
v 
)

+ f u = − ∂ 

∂y 
M + Y o Y (6b)

∂ 

∂ρ
M = z (6c)

∂ 

∂ρ
z 

)
∇ · u + ε

(
∂ 

∂t 

∂ 

∂ρ
z + ∇ ·

(
u 

∂ 

∂ρ
z 

))
+ �

∂ 

∂ρ
e = 0 (6d)

here f and all other variables are now non-dimensional and

he prime has been dropped from the perturbation depth. The

arameter ε = U o / ( f L ) is the Rossby number. The scalings for the

rictional and diapycnal terms are X o , Y o and �, respectively and

re assumed small. 

Following well-known methods, the above are expanded in

owers of the Rossby number, leading eventually to the qg

quation written in density coordinates 

∂ 

∂t 
q + 

1 

f 
J(M o , q ) = −∇ · F q ; q = 

1 

f 
∇ 

2 M o − f 

z ρ

∂ 2 

∂ρ2 
M o (7)

here M o is the lowest order contribution to the Montgomery po-

ential, which is analogous to the more familiar equation in depth

oordinates. Here F q is the flux of pv due to non-conservative

ffects and other notation is standard. The explicit form of F q is 

 q = 

(
�

ε
H 

∂ 

∂ρ
v o − Y o 

ε
Y 

)
i + 

(
X o 

ε
X − �

ε
H 

∂ 

∂ρ
u o 

)
j (8)

nd is consistent with the results of Marshall et al. (2001) . We will

ssume (7) holds everywhere in the basin interior. Having shown

ow non-conservative effects (i.e. e and X , Y ) appear in qg, we will

ot include them for convenience in the following analysis. They

ill eventually be included again where needed. 

We examine the possibility that the essential dynamics on

he boundary are richer than simple qg. In particular, we are

nterested in interactions between the interior qg flow and flows
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i  
n the boundary, where Kelvin waves ( Pedlosky, 2013 ) are active.

ow mode Kelvin waves when viewed from a qg perspective are

oo fast to be perturbed at leading order by the circulation, but

igher mode Kelvin waves move more slowly and can be expected

o interact with the qg flows. Such modes are also associated

ith short spatial scales in the horizontal (high mode deformation

adii) and vertical (high mode number). We will build a boundary

ayer model for qg by introducing these two short spatial scales in

 standard multiple scales analysis. 

The procedure will be illustrated for the western boundary

ayer, although generalization to other boundaries is straightfor-

ard. We simply substitute 

∂ 

∂x 
→ 

∂ 

∂x 
+ 

1 

ε

∂ 

∂χ
(9a) 

∂ 

∂ρ
→ 

∂ 

∂ρ
+ 

1 

ε

∂ 

∂�
(9b) 

here χ is a short zonal variable of O ( ε) relative to the first

aroclinic deformation radius and � is a short density interval

f O ( ε) relative to the full density range, for the existing zonal

nd density derivatives in (6a) . All variables are now expanded in

owers of the Rossby number ε. 

.1. Multiscale expansion 

The leading order equations are somewhat different than the

sual qg result due to the presence of the fast variables 

∂ 

∂χ

(
u o 

∂ 

∂�
z o 

)
+ 

∂ 

∂ρ
z 

∂ 

∂χ
u o = 0 (10a) 

∂ 

∂χ
M o = 

∂ 

∂�
M o = 0 (10b) 

 o 

(
∂ 

∂χ
v o + f 

)
= − ∂ 

∂y 
M o (10c) 

Eq. (10a) can be written 

∂ 

∂χ

(
u o 

∂ 

∂�
z o + 

(
∂ 

∂ρ
z 

)
u o 

)
= 0 (11) 

s the mean state stratification z depends only on ρ . Thus, be-

ause the quantity u o ( 
∂ 
∂�

z o + 

∂ 
∂ρ

z ) is a constant throughout the

oundary layer, the no-flux condition at the boundary requires it

o be zero. We also assume the stratification is non-trivial, so in

he boundary layer 

 o = 0 (12) 

hich is expected in qg theory. This however does not imply ∂ 
∂x 

u o
anishes in the boundary layer. A second ramification of (12) is 

∂ 

∂y 
M o = 0 (13) 

see 10c ) or that leading order pressure on the boundary is a

onstant. Again, this agrees with classical qg analysis. 

At the next order in Rossby number, one obtains 

∂ 

∂t 

∂ 

∂�
z o + 

(
∂ 

∂�
z o + 

∂ 

∂ρ
z 

)(
∂ 

∂x 
u o + 

∂ 

∂y 
v o + 

∂ 

∂χ
u 1 

)

+ u 1 
∂ 

∂�

∂ 

∂χ
z o + v o 

∂ 

∂�

∂ 

∂y 
z o = 0 (14a) 

∂ 

∂ρ
M o + 

∂ 

∂�
M 1 = z o (14b) 
o  
f v o = 

∂ 

∂x 
M o + 

∂ 

∂χ
M 1 (14c) 

∂ 

∂t 
v o + u o 

∂ 

∂x 
v o + v o 

∂ 

∂y 
v o + u 1 

∂ 

∂χ
v o + u o 

∂ 

∂χ
v 1 + f u 1 = − ∂ 

∂y 
M 1 

(14d) 

here u o has been retained for the moment. Eqs. (10c) and

14c) can be used to eliminate M o 

f 

(
∂ 

∂x 
u o + 

∂ 

∂y 
v o 

)
= − ∂ 

∂x 
u o 

∂ 

∂χ
v o + 

∂ 

∂y 

∂ 

∂χ
M 1 (15)

ote that the form of (15) converges to leading order divergence-

ree flow as χ → ∞ . 

Similarly, (14d) and (10c) can be used to eliminate M 1 

∂ 

∂t 

∂ 

∂χ
v o + u 1 

∂ 2 

∂χ2 
v o + v o 

∂ 

∂χ

∂ 

∂y 
v o 

+ 

(
∂ 

∂χ
v o + f 

)(
∂ 

∂x 
u o + 

∂ 

∂y 
v o + 

∂ 

∂χ
u 1 

)
= 0 (16) 

q. (16) can be combined with (14a) to yield 

D 

Dt 

( 

∂ 
∂χ

v o + f 

∂ 
∂�

z o + 

∂ 
∂ρ

z 

) 

= 0 (17) 

here 

D 

Dt 
= 

∂ 

∂t 
+ u 1 

∂ 

∂χ
+ v o 

∂ 

∂y 
(18)

q. (17) is the potential vorticity equation of the boundary layer

nd reduces to the identity 

D 

Dt 

f 
∂ 
∂ρ

z 
= 0 ; χ → ∞ (19) 

q. (17) is analogous to the pv equation used in

ewar et al. (2011) and describes dynamics on the small boundary

cales. We segregate the boundary dynamics from the interior

ynamics by requiring the boundary responses to have vanishing

v anomaly, 

∂ 
∂χ

v o + f 

∂ 
∂�

z o + 

∂ 
∂ρ

z 
= 

f 
∂ 
∂ρ

z 
(20) 

sing (10b) and (14c) reduces (20) to 

∂ 2 

∂χ2 
M 1 − f 

∂ 
∂ρ

z 

∂ 2 

∂�2 
M 1 = 0 (21) 

hich is the elliptic equation also appearing in Dewar and

ogg (2010) and Dewar et al. (2011) . The solution of this equation

s obtained by projecting it on the complete set of orthogonal

unctions defined by the eigenvalue problem 

∂ 2 

∂�2 
F n −

∂ 
∂ρ

z 

f 
λ2 

n F n = 0 ; ∂ 

∂�
F n = 0 ; ρ = (ρs , ρb ) (22)

he equation resulting from (21) admits growing and decaying

xponentials, the latter of which is retained to be consistent with

he boundary layer analysis (see Dewar and Hogg, 2010 for a

iscussion of the linear limit). 

.2. Boundary-interior connection 

At this point, the analysis has shown the interior pv equation

s faced with a constant pressure on the boundary, but the value

f the constant is unknown. In addition, the dynamics of the
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Fig. 1. Surface vorticity profile (same initial condition used in all three models). 
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boundary layer reside in the elliptic Eq. (21) that needs boundary

conditions at χ = 0 for a unique solution. 

The first step to obtain this information is to evaluate (14d) at

the wall 

∂ 

∂t 
v o + v o 

∂ 

∂y 
v o + 

∂ 

∂y 
M 1 = 0 (23)

Integrating (23) around the domain yields 

∂ 

∂t 

∫ 
∂A 

v o · n dl = 0 (24)

provided the along wall velocity is continuous. If, as in the clas-

sical qg equations, the along wall flow is provided only by the

interior geostrophic dynamics, (24) becomes 

∂ 

∂t 

∫ 
∂A 

∇M o · n dl = 0 (25)

which is the usual condition determining the boundary Mont-

gomery potential value (see McWilliams, 1977 ). 

However, in the present case, from (14c) , the quantity v o is

seen to consist of two parts, a geostrophic part connected to the

interior and a geostrophic (in the along wall direction) part that

belongs to the boundary. Thus, (23) can be rewritten 
Fig. 2. Left: vertical temperature profile along the dashed line in Fig. 1 for the MITgcm (

section. 
∂ 

∂t 

∂ 

∂χ
M 1 + v g 

∂ 

∂y 

∂ 

∂χ
M 1 + 

∂ 

∂χ
M 1 

∂ 

∂y 
v g 

+ 

∂ 

∂χ

M 1 

f 

∂ 

∂y 

∂ 

∂χ
M 1 + f 

∂ 

∂y 
M 1 = − f 

(
∂ 

∂t 
v g + v g 

∂ 

∂y 
v g 

)
(26)

here v g denotes the interior geostrophic meridional velocity

valuated at x = 0 . 

Note that the solution of (26) is a prediction for the normal

erivative of M 1 and, as such, is the boundary condition needed

o uniquely solve (21) . Eq. (26) is also the equation solved in

ewar et al. (2011) to compute the forced Kelvin wave response

iven a specified interior geostrophic field. The differences here

re that the interior is allowed to evolve dynamically and interact

ith the boundary response via the solution to (23) . The boundary

onnection to the interior remains to be determined. 

Eq. (26) is hyperbolic and the characteristic solution of it

eads to isopycnals pinching together, and the unphysical result

hat v o becomes multivalued (see Dewar et al., 2011 ). At such

ocations, we instead require that fronts form and stabilize when

he isopycnals become vertical (i.e. they are so-called ’weak’

r discontinuous solutions ( Whitham, 1974 ) of (23) . The fully

eveloped forms for the fronts are characterized by 

∂ 

∂χ
v o + f = 

∂ 

∂�
z o + 

∂ 

∂ρ
z = 0 (27)

he latter constraint is equivalent to the layer thickness vanishing,

hile the former is a statement of zero absolute vorticity and is

eeded for the potential vorticity to remain finite. With vanish-

ng layer thickness, and associated discontinuities in along-wall

elocity, the quantity v o becomes 

 o = v s + 	i 
v i H(x − x i ) (28)

here v s is a smooth function, x is a location on the boundary

nd the index i denotes the front at location x i . The function H is

elated to the usual Heaviside function and is defined by 

(x ) = 0 ; x < 0 ; H(0) = 1 / 2 ; H(x ) = 1 ; x > 0 (29)

n other words, the along wall velocity is a smooth function inter-

upted by a series of step discontinuities. The various derivatives

n (26) thus involve Dirac delta functions, and the full line integral

n (25) becomes a sum of measures of the discontinuities at the

ronts. Recalling that the full along wall velocity is composed of

oth a (smooth) interior geostrophic velocity and a wall response 

∂ 

∂t 

∫ 
∂A 

v g · n dl = −	i 

((
− ∂ 

∂t 
x i 

)

(v i ) + 


v 2 
i 

2 

+ 
M 1 ,i 

)
(30)

here ∂ 
∂t 

x i denotes the rate at which the front at x i moves. Ac-

ording to (30) , fronts modify net geostrophic circulation which, in

urn, influences the value of the boundary Montgomery potential. 
contour interval: 0.5 K). Right: position of the isopycnals in GOLD along the same 
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(a) Day 20 (b) Day 30

(c) Day 40 (d) Day 50

Fig. 3. Snapshots of the surface relative vorticity at days 20, 30, 40 and 50 (moving clockwise from the upper left) from GOLD. 
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A change in net circulation is equivalent to a change in inte-

rated vorticity, which implies the appearance of new vorticity in

he interior, so it is still necessary to indicate how the circulation

hanges in (30) appear as qg vorticity. Recalling that in the pres-

nce of viscous effects, the adiabatic (i.e. e = 0 ) qg equation is 

d 

dt 
q o = −∇ · F q = 

∂ 

∂x 
Y − ∂ 

∂y 
X (31)

here viscous scalings have been set to unity and X, Y are the

onconservative effects working on the momentum equations.

hen solving the viscous qg equations numerically, it is thus nec-

ssary to apply a net boundary pv flux to the equations, which for

 north-south boundary consists of the value of Y on the boundary.

The full boundary velocity equation including viscous effects is

∂ 

∂t 
v o + v o 

∂ 

∂y 
v o + 

∂ 

∂y 
M 1 = Y (32)

here Y is expected to be small everywhere but in the fronts.

ith Y explicitly present, the structure for v o becomes smooth

i.e. the fronts are no longer discontinuous, but are locations of

ery large but finite gradients), so if we consider an integration

ver a boundary segment from just behind a front to just ahead

f a front, there results 

− ∂ 

∂t 
y i 

)

v i + 


(
v 2 

i 

2 

)
+ 
M 1 ,i = 

∫ y + 
i 

y −
i 

Y dy (33)

quivalently, the value of the net boundary flux at the frontal

ocation is determined by the front parameters. Effectively, the
ront injects vorticity into the domain, where the ultimate source

f the vorticity is viscosity. The full solution of the qg system thus

onsists of simultaneously solving the qg equation (with (30) as a

oundary condition) and (32) , using the latter to determine the pv

ux from the boundaries into the interior via (33) . The Eqs. (30),

32) and (33) constitute our DBM. 

. Numerical examples 

We have implemented the above procedure in the quasi-

eostrophic model Q-GCM ( Hogg et al., 2003 ). The viscous term

 is parameterized as an along wall Laplacian acting on v o , which

ith the viscous coefficient used here ( ν = 50 m 

2 /s ) was sufficient

o control the fronts. 

We have compared the parameterized qg evolution with nu-

erical solutions obtained using the MITgcm ( Marshall et al.,

997 ) and the isopycnal model GOLD ( Hallberg, 20 0 0 ) run at high

esolution. 

Parameters typical of a mid-latitude β plane ocean have been

sed, i.e. f = 10 −4 s −1 and β = 2 × 10 −11 s −1 . The basic state

tratification for the MITgcm was set by a linear temperature

rofile in the vertical 

 b = 
T 

(
1 − z 

H 

)
, (34) 

ith H = 10 0 0 m the depth of the water column and 
T = 5 K

he temperature difference between the top and the bottom. The

ame profile was used to determine layer temperatures in both
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(a) Day 20 (b) Day 30

(c) Day 40 (d) Day 50

Fig. 4. Snapsots of the surface relative vorticity at days 20, 30, 40 and 50 for the MITgcm. 
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GOLD and Q-GCM. A linear equation of state is used with thermal

expansion coefficient α = 2 × 10 −4 K 

−1 . 

We consider the initial value problem of a monopolar vortex

situated 75 km east and 200 km north of the southwestern corner

of a 500 km × 500 km domain (see Fig. 1 ). The form used for the

vortex was 

v θ (r) = v o F (z) 
tanh (r/r o ) 

cosh 

2 
(r/r o ) 

, (35)

with 

F (z) = 1 − er f (z/z o ) (36)

where r is a radial coordinate extending from vortex center, r o =
75 km , z o = 500 m and v θ is the corresponding swirl velocity. The

initial vortex position was sufficiently far from the boundaries that

the above formulas were used without modification at the walls. 

The horizontal structure of the vortex is a continuous approx-

imation of the Rankine vortex ( Doswell, 1984 ). At any height z , we

use the geostrophic balance to recover the pressure field 

dP 

dr 
= f v θ , (37)

which can in turn be used to infer the density field via the

hydrostatic balance. The vertical function (36) is chosen such that

both the velocity and the density anomalies are maximum at the

surface. This field is used to initialize the three models, all of

which employ a 1 km horizontal resolution. The MITgcm employs

100 levels with a resolution of 10 m , while GOLD and Q-GCM both

use 10 layers with a constant reduced gravity of 10 −3 m s −2 . The
ertical profile of temperature from the MITgcm and the layer

hicknesses from GOLD are plotted in Fig. 2 . Note that there is no

utcropping in the layered model because all of the outcropped

ensities in the MITgcm are contained within in the uppermost

OLD model layer. We use a harmonic viscosity of ν = 50 m 

2 s −1 

or GOLD and Q-GCM, ν = 10 m 

2 s −1 for MITgcm and free slip

oundary conditions in all cases. 

.1. Results 

A typical vortex sequence as shown in surface relative vorticity

ppears in Fig. 3 from the GOLD experiment, in Fig. 4 for the

ITgcm experiment and in Fig. 5 from the Q-GCM experiment.

arly on the vortex migrates westward toward the wall due to β .

s it is squeezed on the wall it deforms and propagates northward

s expected from ’image’ (see Crosby et al. (2013) and references

herein) dynamics (Day 20). This part of the evolution is entirely

onsistent with purely balanced dynamics. For unknown reasons,

he initial westward vortex drift differs between the models; the

OLD vortex arrives at the wall a few days earlier than in either

he MITgcm or Q-GCM (compare to Figs. 4 and 5 ). 

Upon commencing northward propagation, a very strong cy-

lonic vorticity filament is peeled away from the wall by the

ortex in all models ( Figs. 3 a, b; 4 a, b; 5 a, b). The source of

he vorticity is, however, not a frictional sublayer as the boundary

onditions are free slip. This part of the evolution has no analog

n inviscid qg theory. A similar result was seen in Dewar and

ogg (2010) , and the explanation provided there involved the
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(a) Day 20 (b) Day 30

(c) Day 40 (d) Day 50

Fig. 5. Snapsots of the surface relative vorticity at days 20, 30, 40 and 50 for the Q-GCM. 
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rresting of southward propagating Kelvin waves by the northward

irected flows of the anticyclonic vortex. 

If sufficiently strong, the newly formed cyclonic filament rolls

p onto itself to form a macroscopic cyclone ( Fig. 3 b) which pairs

p with the primary anticyclone to form a dipole. This occurs for

ll three models, although the strength of the cyclonic partner

aries and so the subsequent evolution can follow more than one

ath. The asymmetric pair in GOLD moves the primary vortex

way from the wall and they follow a curved trajectory eventually

eturning to the wall ((see Days 30 and 40); Fig. 3 b and c). The

OLD dipole splits when it again encounters the wall: the cyclone

oves southward and the anticyclone resumes its northward mi-

ration. At this point, a new cycle of cyclonic vorticity generation

egins ( Fig. 3 d). 

The details of the dipolar evolution are highly dependent on

he amount of newly created vorticity at the boundary. Strong

orticity creation (compared to the vorticity of the primary vor-

ex), moves the pair faster away from the wall and, as seen in

he MITgcm results, can even split the primary vortex into two

arts (cf. Fig. 4 d). For weak vorticity generation, the positive

orticity filament may simply be advected around the primary

yclone without forming a coherent vortex. In such a situation,

he primary vortex may not move away from the wall. This is seen

arly in the Q-GCM vortex, although continued cyclonic vorticity

eneration eventually results in a cyclonic vortex. 

Figs. 6–8 illustrate the vorticity injection process. Here, the

nterface displacement (contours) and velocity (colors) on the wall

re plotted. In all three cases, as the anticyclone migrates north-

ard, the upper layers ’pinch’ such that the flow in these layers
s blocked. Most importantly, there is effectively a discontinuity in

he velocity profile and the Montgomery potential in these layers

pon which we base the PV injection in the qg model (see (33) ).

his is consistent with the mean flow-Kelvin wave interaction idea

hat the anticyclone presence is critical to maintaining the dis-

ontinuity. Indeed, if the subsequent evolution moves the vortex

way from the boundary, the front can dissolve. This is seen at

ay 40 in Fig. 6 c, where the vortex has been forced away from

he wall by the newly created cyclone. As the cycle restarts, we

bserve strong similarities between the plots in Fig. 6 b and d. The

equences displayed in these figures are not identical, but agree

ualitatively in the marked evolution of the wall isopycnals and

he appearance of cyclonic vorticity. 

The initial condition in these experiments consists only of

nticyclonic vorticity and, for that matter, negative pv anomaly

not shown). Cyclonic vorticity for the most part appears in areas

onsistent with our explanation based on front formation, i.e. it

treams from regions on the wall slightly north of the vortex cen-

er. However, cyclonic vorticity also appears elsewhere in many of

he plots, as in Fig. 3 b–d. The other cyclonic zones are not of a wall

rigin, as can be seen in Fig. 9 a, which shows potential vorticity

t Day 40 from the GOLD results. Note in particular the cyclonic

treamer along the southwestern boundary between 50 km and

00 km in Fig. 3 c. This feature is visible in pv as a streamer whose

alue is not anomalously high; rather at pv ̃ 1 × 10 −6 m 

−1 s −1 it

orresponds to the background. Since the wall injects pv into the

ystem and the cyclonic streamer is not anomalous in pv, it is

lear that cyclonic vorticity is a result of conservative pv evolution.

n contrast, the large region of intense cyclonic vorticity paired
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(a) Day 20 (b) Day 30

(c) Day 40 (d) Day 50

Fig. 6. Snapsots of the along wall velocity (color) and interface displacement (contours) days 20, 30, 40 and 50 for GOLD. 
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with the original vortex in Fig. 3 c corresponds to a strong positive

pv anomaly in Fig. 9 a. Because such pv is not present in the initial

condition, it can only be the result of wall injection. Such behavior

is characteristic of the pv fields in both the GOLD and MITgcm

runs. An example of pv from the Q-GCM at Day 40 appears in

Fig. 9 b. Here again a positive pv anomaly appears at the location

of cyclonic vorticity, but nowhere else. By construction, the source

of this pv is due to the wall interaction, which supports our

theoretical modeling. 

In Fig. 10 , we plot the time series of the mean circulation

in the upper layer (total circulation divided by the area of the

domain). Recall that the models all employ free-slip boundaries,

so the boundary effect on circulation would normally be expected

to be small. This is what happens initially. Until day 20 there

is no significant variation in the circulation as the vortex moves

westward toward the wall. However, between day 20 and day 40

strong circulation changes are seen, even to the point of reversing

the sign of the circulation. At day 40, the mean circulation is about

10 times stronger than its initial absolute value. This increase cor-

responds to the injection of cyclonic filaments into the domain

(see Figs. 3–5 ). As mentioned previously, the injection starts earlier

in GOLD. After the initial injection, we expect the three curves to

only qualitatively match: in MITgcm, the injection is stronger and

forces the vortex further away from the wall such that the next

peel off and strong circulation change do not occur before day 70. 

In Fig. 10 , we also add a curve for an MITgcm experiment using

ν = 50 m 

2 s −1 (dashed red line) instead of ν = 10 m 

2 s −1 as dis-

cussed previously. For this configuration (using the same viscosity

as GOLD and Q-GCM), the vorticity injection was much weaker

and inadequate for the formation of a coherent cyclone. The reason

for this distinction is due to the potentially very different physical

n  
ffects of ’horizontal’ viscosity in isopycnal and level models. Away

rom fronts where isopycnals have small slopes, layer horizontal

nd level horizontal viscosity play comparable roles. Near fronts,

owever, ’horizontal’ layer viscosity in transferring momentum

long isopycnals acts almost in a vertical sense, whereas in a level

odel, momentum transfers are largely across isopycnals. This

orks to smooth the along wall velocity profile for a level model

uch that front formation and the accompanying vorticity injection

re suppressed. The tendency for the isopycnals to form fronts in

hat experiment was largely suppressed (not shown). 

. Energetics consequences 

Consider now the balanced energetics of a closed basin. This is

btained by multiplying the qg pv equation by the Montgomery

otential and integrating by parts. 
 ρb 

ρs 

∫ 
S 

(
M o 

∂ 

∂t 
q + M o u o · ∇q 

)
∂ 

∂ρ
z d Ad ρ

= 

∫ 
V 

(
M o 

∂ 

∂t 
q o + M o u o · ∇q o 

)
dV 

= − ∂ 

∂t 

∫ 
V 

[ 

(∇M o ) 
2 

2 f 
− f 

∂ 
∂ρ

z 

( ∂ 
∂ρ

M o ) 2 

2 

] 

dV 

+ 

∫ 
z 

[∮ 
M o 

∂ 

∂t 
∇M o · n dl 

]
dz −

∫ 
S 

f o w e M o dA 

= −
∫ 

V 

M o ∇ · F Q dV (38)

here w e denotes any Ekman pumping energy source. The no-

ormal flow conditions have been used to eliminate advection and
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(a) Day 20 (b) Day 30

(c) Day 40 (d) Day 50

Fig. 7. Snapsots of the along wall velocity (color) and temperature (contours; contour interval = 0.5 K) days 20, 30, 40 and 50 for the MITgcm. 
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he domain extends into the overlap region of the boundary layer

here qg is still accurate. The boundary layer analysis assures that

he leading order Montgomery on the edge must be a constant

n any isopycnal, thus allowing it to be migrated outside of the

oundary line integral in (38) . The result is 

∂ 

∂t 

∫ 
V 

(K + P ) d V = −
∫ 

S 

w e M o d A + 

∫ 
z 

M o 

∫ 
∂ 

∂t 
∇ 

M o 

f 
· n d ld z − �

(39) 

here free slip boundaries have been used, 

 = 

(∇M o ) 2 

2 f 
(40) 

nd 

 = 

f 
∂ 
∂ρ

z 

( ∂ 
∂ρ

M o ) 2 

2 

(41) 

re the kinetic and potential energies seen in (38) and � denotes

iscous loss proportional to velocity gradients squared integrated

ver the domain. 

A statement about the net geostrophic circulation change is

eeded to complete the equation. This is obtained from (30) , such

hat (39) becomes 

∂ 

∂t 

∫ 
V 

(K + P ) d V = −
∫ 

S 

w e M o d A − �

−
∫ 

z 

	i 

(((
− ∂ 

∂t 
x i 

)

(v o ) +


v 2 o 

2 

− 
M 1 

)
M o 

)
dz (42) 

hus the fronts governed by (26) act like an energy sink on the

nterior balanced flow. Physically the sink represents flow up the
ressure gradients along the boundaries set up and maintained by

he wall dynamics. 

Eq. (42) (with w e = 0 ) can be used to examine the energetics in

he present case. Fig. 11 (left) compares the time evolution of the

inetic and potential energy relative to their initial values in the

hree models. The curves all show their strongest behavior from

ays 20 to 40 during the period of strong wall-vortex interaction.

onsistently among the three models, potential energy transfers

ggressively to kinetic energy during this interval. The level of

inetic energy reached after 40 days is about twice its initial

alue (not shown). After 40 days, the APE dropped by 50% in both

-GCM and Gold and 25% in MITgcm (not shown). After 40 days

n MITgcm, we mentioned previously that the interaction with the

all is less pronounced as the eddy moves away from the wall.

his tendency is also visible in the PE and KE curves. Note also

he overall energetic behavior differs between the MITgcm and the

ayer models. This is due to the differences in model construction

nd the differing trajectories of the vortex relative to the wall. 

Total energy evolutions from the three model runs appear in

ig. 11 (right). Very early ( < 20 day) energy decreases slowly at

 rate that can be accounted for from internal dissipation, �.

his changes significantly once the vortices begin interaction with

he boundary. Consistent with our earlier discussion, total energy

ecays first for GOLD, where the vortex experiences its earliest

ncounter with the wall. Both GOLD and Q-GCM exhibit roughly

omparable decay rates. The MITgcm is considerably slower in

nergy loss. However, upon inspection of Fig. 7 , it is seen that

fter the initial wall encounter, the cyclone is able to push the

ortex away from the boundary much more effectively in the

ITgcm than in the other models. As a result, the MITgcm cyclonic
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(a) Day 20 (b) Day 30

(c) Day 40 (d) Day 50

Fig. 8. Snapsots of the along wall velocity (color) and interface displacement (contours) days 20, 30, 40 and 50 for the Q-GCM coupled to the wall equation. 

(a) GOLD

3.80

1.90
0.95
0.0
0.95
1.90
2.85
3.80

2.85

(b) Q-GCM

Fig. 9. Potential vorticity fields at Day 40 from GOLD and Q-GCM. Regions of positive potential vorticity coincide with regions of cyclonic vorticity; other regions of cyclonic 

vorticity are invisible in pv. This is consistent with our theory. 
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vorticity generation, and thus energy decay, for the duration of the

experiments is much less. 

5. Summary 

We have revisited the problem of boundary conditions for

general circulation models. When applied to the problem of a

westward drifting vortex encountering a boundary, classical qg

implementations with free-slip boundary conditions leave the

net circulation of the domain virtually unchanged. In contrast,

primitive equation models inject strong cyclonic vorticity into
he domain and as a result lose energy considerably faster when

ompared to the qg result. We have proposed a boundary layer

nalysis that, when used in a qg model (effectively as a DBM),

ndows it with energy and vorticity behavior like that computed

rom the primitive equation models. 

The essence of the analysis is in the interaction between in-

erior balanced dynamics and boundary dynamics, the latter gen-

rally arising because of the no-normal flow boundary condition.

he wall dynamics are constrained to have no potential vorticity

nomaly; for the case of a wall, Kelvin waves are the result. When

he interior flow imposes a velocity on the wall in excess of a
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Fig. 10. Time series of the relative vorticity in the upper layer in the 3 configura- 

tions. We also added the curve for MITgcm with ν = 50 m 

2 s −1 . 
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elvin wave phase speed, the blocked downstream wave propaga-

ion builds a finite amplitude response in the form of fronts. Regu-

arization of the fronts, given their form, requires either viscous or

iabatic effects that, when expressed in a pv framework constitute

 pv flux from the wall. The size of the flux can be computed from

he front characteristics themselves and as such does not require

n explicit viscous or diabatic coefficient. The effect of the wall

arameterization is to add the frontal pv flux to the preexisting

nterior pv distribution. This effect, when introduced into qg, quali-

atively and quantitatively (if not exactly) amends the qg evolution

o that seen in primitive equation models. We have also found

hat these mechanics effectively drain energy from the interior

alanced flow, suggesting that a resolution to the open question

f the fate of balanced energy involves boundary dynamics. 

While we think of this as a DBM for subgridscale parameter-

zation, it describes only a subset of possible interior-boundary

nteractions. These mechanics require an interior flow counter to

he direction of topographic waves; the case of oppositely directed

ows remains unstudied. Further, aspects of the present interac-

ion remain unclear. The boundary fronts govern the amplitude of

he effect on the interior, but the nature of the frontal dynamics

emains unclear. The fronts themselves are related to the pv fluxes,

hus making the feedback relatively insensitive to poorly known

arameters like eddy diffusivities, but we have also found too large

f an eddy viscosity can damp these mechanics. We speculate that

he fronts exist in a regime independent of viscous coefficients,
ig. 11. (left) Time series of the kinetic (solid) and potential (dashed) energy anomalies 

uns. 
ut have yet to uncover this regime. We have also shown only

ow to amend sub-grid scale qg dynamics with our DBM. Further

tudies will explore recipes for including these effects into the

ub-grid scale parameterization of primitive equations. 
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ppendix A. An Augmented Jacobian for Stratified QG 

The Arakawa Jacobian is routinely used for the advection

perator in quasi-geostrophy. While it is generally apt, stratified

g boundary conditions are not necessarily consistent with the

lassical implementation. The analytical properties of the Jacobian

or constant boundary p are ∫ 
A 

J(p, q ) dA = 0 

 

A 

pJ(p, q ) dA = 

∫ 
A 

J( 
p 2 

2 

, q ) dA = 0 

∫ 
A 

qJ(p, q ) dA = 

∫ 
A 

J(p, 
q 2 

2 

) dA = 0 (A1) 

ecause of no normal flow. As shown by Salmon and Talley (1989) ,

he classical Arakawa discretization is consistent with these prop-

rties only if the boundary p ( ∂A ) vanishes, which in a stratified

ystem is not generally true. Equivalently, the classical Arakawa

ormulation does not meet (A1) , as can be shown by straight-

orward numerical integration. Holland (1978) noticed this and

nstead developed an energy equation by multiplying the pv

quation by a pressure adjusted for the boundary pressure. Here,

losely following Salmon and Talley (1989) , a generalization to the

rakawa Jacobian is developed that allows for non-zero boundary

ressure. 

Potential vorticity conservation implies 
 

A 

α( 
∂ 

∂t 
q + J(p, q )) dA = 0 (A2)

or any α( x, y ). Manipulating the arguments, one can show 

 

A 

αJ(p, q ) dA = 

∫ 
A 

qJ(α, p) dA (A3)

y using only the no-normal flow condition on p . However, if the

ther permutation of arguments is attempted, there results 
 

A 

αJ(p, q ) dA = 

∫ 
A 

pJ(q, α) dA − p(∂A ) 

∫ 
∂A 

∇q · tdl (A4)
in the three models. (right) Time series of the total energy from the three model 

http://dx.doi.org/10.13039/100000001
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where t is the unit vector tangential to the domain boundary. The

last integral on the right hand side is not guaranteed to vanish for

non-zero boundary pressure. 

The integrated Jacobian can in general be written ∫ 
A 

αJ(p, q ) dA = a 

∫ 
A 

αJ(p, q ) dA 

+ b 

(∫ 
A 

pJ(q, α) dA − p(∂A ) 

∫ 
∂A 

α∇q · tdl 

)
+ c 

∫ 
A 

qJ(α, p) dA (A5)

where a + b + c = 1 . We now express (A2) symbolically in discrete

form 

	i δA i αi 

(
∂ 

∂t 
q 

)
i 

= 	δA i [ aαi J i (p j , q k ) + bp i J i (q j , αk ) 

+ cq i J i (α j , p k )) + δl i p(∂A ) αi (∇q ) i 
i,ib ] 

= F (αi , q j , p k ; a, b, c) (A6)

where δA i is the area element associated with point i, δl i the

line element associated with boundary point i and 
i, ib is the

Kronecker delta function defined by 


i,ib = 1 ; i = ib 


i,ib = 0 ; otherwise (A7)

with ib the index of a point on the boundary. The Salmon and

Talley (1989) notation has been used, but the form of F is different.

From (A6) , one can show 

− ∂ 

∂t 
q i = 

∂ 

∂αi 

F (A8)

which specifies the form of the Jacobian that satisfies (A2) . 

The only modification to (A6) from that appearing in

Salmon and Talley (1989) are terms on the boundary, imply-

ing that the classical Arakawa discretization applies to the interior

gridpoints. On the boundary, the usual discretization must be

augmented by any discretization satisfying ∮ 
∇q · n dl = 

∮ 
q ∇q · n dl = 0 (A9)

The second order discretization (
∂ 

∂x 
q 

)
i 

= 

q i +1 − q i −1 

2
l 

(A10)

meets this criterion provided the q in the second line integral

is evaluated at point i . Evaluating F and taking the derivative in

(A8) determines the required Jacobian stencil. For a point on a

north-south wall, the usual discretization must be modified to 
 ib, j (p, q ) = J ib, j (p, q ) Arakawa + p(∂A )(q (i b , j + 1) − q (i b , j − 1)) 

(A11)

here ib, j are the zonal and meridional indices of a western

oundary point. A straightforward modification of the above

pplies to points on other boundaries. 
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