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ABSTRACT

This paper focuses on potential vorticity (PV) budgets in the North Atlantic with an emphasis on the wind-

driven subtropical gyre. Since PV is the key dynamical variable of the wind-driven circulation, these budgets

are important to understand. PV is a conservative quantity on isopycnals and can only enter or exit through

the boundaries, like the lateral topography or the surface. The latter fluxes are diagnosed and tested against

the evolution of the PV content in an isopycnal layer. The former are computed using the Bernoulli function. The

essential result is found for all the tested isopycnals, and the dominant feature of PV is recirculation, with very

little added at the surface or the boundaries. Density coordinates are well suited to understanding PV cir-

culation. A novel technique for computing the Bernoulli function is proposed. The Bernoulli function

is governed by a simple elliptic equation and the solutions demonstrate the dominant contribution of PV

advection.

1. Introduction

In the past 50 years, the quasigeostrophic (QG) ap-

proximation has been widely used to describe the ocean

[see Berloff et al. (2007) for a recent example]. This

approximation reveals the large-scale characteristics of

the ocean circulation via the use of potential vorticity

(PV). In the QG formalism, sources and sinks of PV

are explicitly written into the equation of evolution. For

example, the classical double gyre circulation is ob-

tained by applying wind stress curl to the surface layer

(Berloff et al. 2007). This formalism is appropriate to

describe the large-scale evolution of layers that do not

outcrop.

The form of PV appropriate to primitive equations

in the Boussinesq approximation is the Ertel PV (e.g.,

Vallis 2006), written as

Q5 2
1

r0
v � $s , (1)

with v 5 f 1 $ 3 u, the sum of the planetary and the

relative vorticity, r0 a reference density, and s any

thermodynamic variable. We here will choose potential

density as s.

It is now widely recognized that the impermeability

theorem applies to PV in the primitive equations

(Haynes and McIntyre 1987). This theorem states that

PV cannot cross isopycnal surfaces and is exactly con-

served in an isopycnal layer (unlike mass). The only lo-

cations where PV can enter or exit a layer are at contacts

with boundaries like the sea surface or the topography.

The evolution equation for PV is

›

›t
r0Q1$ � J5 0, (2)

where J is a generalized flux vector (to be defined in

section 2). Consider an isopycnal layer. At the air–sea

interface, the flux of PV through the surface is given by

the vertical component of J: J � k 5 Jz. Similarly, if the

layer intersects the topography, the flux of exiting or

entering PV is given by J � s, where s is the unit vector

normal to the topography.

The circulation of PV in the ocean interior is also

dictated by the orientation of J. This vector is not nec-

essarily parallel to an isopycnal surface; components of J

normal to the layer imply that the surface will move so

that PV does not cross that surface.

Ertel and QG PV differ in that in the primitive

equations a range of density layers receive PV at their

out-/incrops, whereas in the QG formalism only the

upper layer is forced by the atmosphere. This picture is

further complicated by the seasonal cycle, which forces
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a considerable annual migration of the outcrops. This

migration allows layers to receive atmospheric forcing

contributions from various physical locations.

To better understand the PV dynamics in the ocean,

we ask the following questions for a representative

subset of isopycnals participating in the wind-driven

gyre: How much PV enters the ocean via air–sea inter-

action?What is themain pattern of PV circulation in the

interior and how much PV is created or destroyed at the

topography?

To address these questions, we consider the PV bud-

get using the output of a numerical model and separate

the PV circulation in the ocean interior from the PV flux

at the boundaries. All the numerical computations are

performed with a 1/128 run of the North Atlantic with the

Nucleus for EuropeanModelling of the Ocean (NEMO;

Madec 2008). This run is described in Treguier (2008)

and Maze et al. (2013). The atmospheric forcing is

the Drakkar forcing set, version 4 (Brodeau et al. 2010),

which is essentially based on the 40-yr European Centre

for Medium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-40; Uppala et al. 2005). The run spans

27 years (1980–2006) of which we analyze the last

10 years. The sampling of the output is 5 days.

Such a resolution (1/128) is necessary to highlight the

mesoscale role in the PV dynamics. As shown in Polton

and Marshall (2007), the eddy component of the PV

dynamicsmight be of the same order ofmagnitude as the

mean PV dynamics. Our study can be seen as an exten-

sion of the work byMarshall et al. (2001), who computed

such PV budgets in a noneddying model.

The paper is organized as follows. Section 2 is dedi-

cated to the description of PV flux at the surface. We

review several mechanisms that are responsible for

generating/extracting PV at the surface. Section 3 is

centered on the ocean interior PV circulation. Conclu-

sions are given in section 4. Circulation and surface flux

are combined in a companion paper (Deremble and

Dewar 2013, hereafter D13) that addresses the dynamics

of mode water.

2. Surface PV flux

a. General statements

To understand subtropical gyre PV fluxes, it is nec-

essary to compute the vertical component of the vector J

at the air–sea interface. The form of the generalized PV

flux [see Eq. (2)] can be found by combining the mo-

mentum and density equations and is written as

J5v
›s

›t
1

�
›u

›t
1$B

�
3$s , (3)

with the Bernoulli function B,

B5
1

r0
(P1 rgz)1

u2

2
1

y2

2
, (4)

being the sum of the pressure and potential and kinetic

energy (see Sch€ar 1993). This expression for J is strictly

identical to

J5 r0Qu1v
Ds

Dt
1F3$s1

F

r0
$r3$s (5)

(see also Marshall et al. 2001). In Eq. (5), the vector J is

the sum of an advective flux (first term on the right-hand

side) and nonadvective contributions (the next three

terms). The term vDs/Dt is the vorticity multiplied by

the Eulerian derivative of potential density. The term

F3 $s represents mechanical PV forcing (with F being

the nonconservative forces of themomentum equation)

and the last term comes from pressure-dependent

effects in the equation of state (sometimes referred to

as ‘‘thermobaricity’’).

b. Validation in a model

Our first step is to validate Eq. (2) and the imperme-

ability theorem in a numerical model. We compute the

time rate of change of the total PV inside an isopycnal

layer and compare it to the PV flux at the surface. This

first evaluation is done while neglecting the flux of PV at

the topography (see also D13 for an analytical deriva-

tion). The PV fluxes at the solid boundaries are dis-

cussed in section 3.

The integrated PV in a layers is well approximated by

the vertical component of the vorticity multiplied by the

vertical stratification integrated over the layer (Vallis

2006),

Qs 5

ð
x

ð
y

ð
z
( f 1 k � $3 u)

›s

›z
dx dy dz , (6)

where the triple integral spans the entire isopycnal

layer, and the subscript is a reference to the given iso-

pycnal layer. This simplifies to an integration over an

isopycnal layer, and is accurately approximated for

a thin layer as

Qs 5 (s22s1)

ð
x

ð
y
(f 1 k � $3 u) dx dy , (7)

where s2 ands1 are the upper and lower density limits of

the layer. Notice that the thickness of the layer does not

appear in the integrated PV (aside from the multipli-

cative constant s2 2 s1). It only consists of the sum of
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the planetary and relative vorticity integrated over the

geographic extension of the layer.

Figure 1a is a time series of the integrated PV in the

layer 26.06 0.25kgm23. Henceforth, we omit the density

units when labeling an isopycnal layer. According to Fig.

1a, the integrated PV Q26 decreases from September to

March and increases during the rest of the year. This

is consistent with the seasonal evolution of the out-

cropping. Indeed, from Eq. (7), we know that the in-

tegrated PV is a rough measure of the surface extension

of the isopycnal layer scaled by the Coriolis parameter.

Figure 1a largely reflects the northern migration (in

spring) and southern retreat (in autumn) of the outcrop.

Differentiating this time series gives an estimate of

the rate of PV production/destruction. This time rate of

change of the integrated PVQs
t is plotted together with

the integral of2Jz [computed according to Eq. (3)] over

the outcropping window (Fig. 1b). This operation consists

of defining a spatial mask taking values of 1 if the surface

density is between 25.75 and 26.25 and zero elsewhere.

This mask is variable in time as it follows the out-

cropping window. For every output of the model, the

field Jz is multiplied by this mask and the spatial in-

tegration of the result is performed. We end up with a

time series of 73 points (5-day sample of one year) that is

plotted in Fig. 1b.

The correlation coefficient between these two curves

is 0.96. A perfect matching between these two curves

does not occur partly due to the neglect of processes

related to the topography and because of spatial and

temporal discretization (see the discussion in the next

paragraph). However, the agreement between the two

strongly supports the validity of Jz as expressed in Eq. (3).

In Fig. 1a, we also reconstructed the time series of

the integrated PV using2Jz (blue curve). The red and

blue curves are consistent with the curves showing the

FIG. 1. (a) Red: 1-yr time series with a 5-day sampling of the integrated PV inQ26. Blue: reconstructed time series

using the time integral of 2Jz. Black: as in blue, but for the time integral of 2Jsumz . (b) Red: comparison of the time

derivative of the integrated PVQ26
t . Blue:2Jz for that same year. (c) As in (b), but for2JBz instead of2Jz. (d) As in

(b), but for 2Jsumz instead of 2Jz.
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differentiated time series: Jz closely reflects the vari-

ations of PV (correlation coefficient: 0.99). The curve

of integrated Jz shows an anomalous trend of PV

creation, which we discuss next.

c. Global budget and aliasing issue

Wenowexaminemore closely the different components

of Jz. The three contributions to Jz in Eq. (3) are k � vst,

k � (ut 3 $s), and k � ($B 3 $s). If we look at a daily

snapshot of Jz, the dominant term is k � vst (not shown).

This term is in fact another way to look at the huge sea-

sonal meridional migration of isopycnals (several thou-

sands of kilometers in one year). But in a 1-yr period, we

expect an isopycnal to return near to its initial position,

so the average of this term should be small compared to

the other terms. After a long average is taken, we expect

that the remnant will be the correlation between the rel-

ative vorticity and the time derivative of the density. This

statement is true at every location, evenwhen an isopycnal

window is used as conditional averaging.

To demonstrate this proposition, suppose that we

have perfect knowledge of the density at the surface of

the ocean at any instant in time t. Suppose also that the

state of the ocean at the end of the year is identical to the

state of the ocean at the beginning of the year. We want

to measure the contribution of the term k � vst to the

surface PV flux. To a first approximation, this term is

equal to fst (we replace the vorticity by the planetary

vorticity). We consider an isopycnal layer with the in-

terval [s1, s2]. At a given location (x, y) and a given time

t, if the surface density s(x, y, t); [s1, s2] then Jz(x, y, t)

5 0. Suppose now the isopycnal layer sweeps by this

location (e.g., during the spring migration). As long as s

2 [s1, s2], there is a component of Jz that is equal to fst.

The summation (or integral) of all the instants in which

s 2 [s1, s2] returns a global contribution equal to

Jz(x, y)5
Ð
spring fst dt5 f (s2 2s1). Then, during the au-

tumn migration, the isopycnal layer travels in the oppo-

site direction and the contribution is now f(s12 s2). The

sum of these two contributions must be exactly zero.

We have computed the term fst in various locations

and over 10 years andwefind that this term is not equal to

zero, or even small. In view of the above, we interpret this

as an error of the analysis and explain it primarily as being

due to the 5-day sampling of themodel output. The spring

migration of the outcrop is faster than the autumn retreat

(not shown). At a given point (x, y), it is possible that one

day in spring s(x, y, t), s2 and five days later s(x, y, t).
s1. In such case there will not be any contribution at this

precise location during the spring migration, whereas the

real contribution should be f(s2 2 s1) (with perfect

sampling).During the return phase, which is slower, there

is more chance that at this same location there will be

a day for which s1 , s(x, y, t) , s2, which means that

there will be a contribution on the order of f(s1 2 s2).

The global contribution will appear as negative from the

analysis when it is in fact zero.

The numerical evaluation of k �vst is at leading order

equal to fst. So replacing the planetary vorticity by the

total vorticity does not significantly change the result.

We expect the quantity k � (ut 3 $s) to be an order of

magnitude smaller than k � ($B 3 $s) (Marshall et al.

2001). This proposition is verified later. It remains that

the leading-order time-averaged (written with a bar)

vertical PV flux following an outcrop is approximately

Jz 5k � ($B3$s) , (8)

[the last term of Eq. (3)]. The mean PV flux is given by

the intersection of the Bernoulli contours and the po-

tential density contours.

We compute the spatial- and temporal-mean PV flux

[using Eq. (3)] on several outcropping windows using

Lagrangian averaging. For example, the mean of the

blue curve in Fig. 1b (extrapolated for the 10-yr time

series) gives the total amount of PV extracted at the air–

sea interface in isopycnal 26.0. We normalize the result

by the size of the outcrop area: ds 5 0.5. The same

operation is performed on several density classes from

24.0 to 27.0 and the result is plotted in Fig. 2.

In this figure, the solid line is computed with the full

Eq. (3). The dotted line with squares is the component

k � (ut 3$s).We confirm that this quantity does not play

a major role in modifying the global surface PV flux.

The dashed line with asterisks is k � vst. This curve is

similar to fst (not shown), justifying the negligible role

played by the relative vorticity in this term. As men-

tioned earlier, this curve should be very close to zero,

but is in fact negative. As explained before, we attribute

the negative values of this curve to the 5-day sampling

that produces this negative bias.

Finally the dashed curve with crosses is k � ($B3$s).
This curve takes always positive values with local max-

ima at 24.5 and 26.5. The shape of the curve is similar to

the one obtained byMarshall et al. (2001) but our values

are twice as large. There are several possible explana-

tions for this. We use an eddy-resolving model (with

possible larger values of $B and $s). They use monthly

averaged values for their computation that is again

acting as a smoothing operator for $B and $s.
Using the curve k � ($B3$s), we see that all density

classes from 24 to 27 experience PV loss at the surface.

This includes the mode water density range centered at

26.3, a result that differs from that in Olsina et al. (2013).

We ascribe this difference to errors introduced by the

mixed layer product they employed. Olsina et al. (2013)
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recognized this uncertainty as large; our result here

supports that concern. Nonetheless, the order of mag-

nitude of the PV flux is small. As a demonstration of

this, consider the size of the flux expressed as an equiv-

alent heat flux. Given an outcropping window of about

4000 km 3 2000 km and using a mixed layer depth of

100m, we obtain an equivalent Qnet 5 10Wm22 cor-

responding to the value of Jz 5 4 kgm21 s22 in Fig. 2. In

comparison, the annual-average heat flux in the North

Atlantic isO(100Wm22). Nonetheless, if we assert that

the ocean is approximately equilibrated in PV forcing

(in the 10-yr time series we are using, there are no ob-

vious trends in the subtropical gyre), then the long-term

mean ›q/›t ’ 0. From Eq. (2), the net flux at the surface

has to be balanced at another boundary, which we ex-

pect intuitively will be centered in the western boundary

currents.

d. Discrepancy with the bulk formulation

When trying to evaluate the surface PVflux from data,

it is more appealing to use Eq. (5) instead of Eq. (3).

However Eq. (5) remains difficult to evaluate directly,

requiring knowledge of many contributions to the mo-

mentum and buoyancy equations that are challenging to

infer in both observations and models. As a result, ob-

servational studies (e.g., Czaja and Hausmann 2009;

Deremble and Dewar 2012; Maze et al. 2013) have re-

sorted to scaling analysis to estimate Jz (see Marshall

andNurser 1992). Specifically, the vertical component of

both the buoyancy and the mechanical terms of the J

vector are approximated by

JBz 52
faQnet

hcp
1

fbS(E2P)

h
(9)

and

JFz 5
k � (t3$s)

r0de
, (10)

withQnet as the air–sea heat flux, a and b as the thermal

and haline expansion coefficients, h as the depth of

the mixed layer, cp as the specific heat capacity, S as the

surface salinity, (E 2 P) as the freshwater flux, t as the

surface wind stress, and de as the depth of the Ekman

layer. This depth is usually approximated by de 5 0.4u*/f,

with u*5
ffiffiffiffiffiffiffiffiffijtj/rp

, where 0.4 is an empirical constant,

determined from observations (Wang and Huang 2004).

Another contribution to stress-driven PV creation

measuring the extraction of PV due to mixing inferred

by wind has been recently highlighted by Deremble and

Dewar (2012). The scaling proposed for this effect is

JWz 5
0:7fru3*
gh2

. (11)

This component models the entrainment of water at

the base of the mixed layer. This component of the PV

FIG. 2. Solid line with plus signs: mean dJz/ds (m2 s22) computed on outcropping window

from 24.0 to 27.0. Dashed line with crosses: the k � ($B3$s) component of Jz. Dashed line

with asterisks: the vst component. Dotted line with squares: the k � (ut 3$s) component.
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flux is always positive since the wind can only mix the

upper layer and has been shown to be of the same order

of magnitude as JBz . The multiplicative factor (0.7) re-

mains a matter of debate and is subject to adjustment

depending on the sign of the buoyancy flux (Deremble

and Dewar 2012).

These scaling laws [Eqs. (9)–(11)] are convenient as

they are readily evaluated from observations external to

the ocean and need little in situ data (only mixed layer

depth). On the other hand, their accuracy has not been

thoroughly assessed. We use model outputs to address

this question, with the conclusion that these scaling laws

are appropriate for the fall and winter season. In-

accuracies due to poorly observed shallow summer

mixed layers tend to overwhelm the estimates away

from the winter, leaving annual averages suspicious.

These scaling laws are compared to the time rate of

change of the integrated PV [as was done in the previous

subsection with the formulation of Jz given in Eq. (3)]. In

Fig. 1c, the curve Qs
t is compared to JBz , and in Fig. 1d,

Qs
t is compared with Jsumz 5 JBz 1 JFz 1 JWz . The correla-

tion between the two curves is 0.79 and 0.84, re-

spectively. In both cases, the flux is usefully estimated in

winter whereas it is greatly and persistently over-

estimated in summer. The addition of JWz helps to reduce

the bias in summer but is not sufficient to bring about

agreement with Qs
t .

The primary reason for the difference is that JBz is

overestimated in summer because of the highly volatile

nature of the thin summertime mixed layer and the

nonlinear sensitivity of this quantity to it. We have tried

different criteria to compute the mixed layer depth, but

all these estimates give roughly the same value of JBz (see

also Olsina et al. 2013). It is also possible that heating

does not only occur in the mixed layer; rather a fraction

of it can be used to warm the layer below the mixed

layer. A parameterization of this process would be to use

a corrected value of the mixed layer thickness in Eq. (9).

We conclude from this comparison that bulk formu-

lations of PV flux can be useful but must be viewed

appropriately.Wintertime PV flux estimates are reliably

portrayed in this manner, but summertime processes are

too heavily dependent on the variable mixed layer to be

trusted. Olsina et al. (2013) obtained annual-average PV

flux estimates for the mode waters that suggested on

average that the mode waters were receiving PV at the

air–sea interface. It is likely that this result was biased

due to an overestimated summer contribution.

e. The spatial structure of surface PV forcing

Figure 3 shows estimates of the PV extraction/input

by different processes. These plots are a 10-yr average of

a given component of Jz in the layer s5 26.06 0.25. To

compute this average, we compute Jz for each output of

the model (5-day sampling) and we apply a mask taking

values of one on the outcropping window and zero

elsewhere. Each of these maps is summed and then di-

vided by the number of maps. All the variables needed

to compute Jz either come from the model output or

from the forcing used in themodel (Brodeau et al. 2010).

These forcing terms (wind, Qnet) are sampled on the

same 5-day basis.

To understand these maps of PV extraction/input, we

need to make a clear distinction between the daily

snapshot of Jz (not shown) and the time average of Jz
(Fig. 3).

As mentioned earlier, instantaneous PV flux can dif-

fer significantly from the time-averaged PV flux. How-

ever, it is the daily flux pattern that leads to the idea that

PV destruction occurs in winter and PV production oc-

curs in summer. This is not true if we do the entire

‘‘summer’’ average (the period during which the outcrop

is north of a certain latitude; roughly from March to

September). Much of the summer production is re-

moved in the following winter as the outcrop sweeps

south (see also Fig. 1).

The first panel (Fig. 3a) is the component that has

been validated in the previous section k � ($B3$s). In
Fig. 3a, the region of the separated Gulf Stream (east of

Cape Hatteras) is a PV input region. It corresponds to

the wintertime for this outcrop. As we approach the

northernmost outcrop (which occurs in summertime), Jz
tends to be positive. This segregation between positive

and negative values is seen in all isopycnal layers (not

shown). For example, if we consider layer 24.0, which

outcrops north of the Gulf Stream in summer (not

shown), the blue zone in Fig. 3a is replaced by an orange

zone.

We now analyze each individual contribution as given

by the scaling laws and compare it to this reference map.

Buoyant PV generation JBz is mostly negative, consisting

of a net restratifying PV flux. Diabatic heating fluxes PV

into the ocean. Indeed, this term scales as Qnet/h, and

because the mixed layer depth is much thinner in sum-

mer than in winter, the year average of this term will

emphasize the summer value (negative).

As mentioned by Maze et al. (2013), mechanical PV

generation JFz remains small compared to JBz even with

an eddy-resolving dataset. Thomas (2005) suggested

that this component can be large in the presence of

a sharp density gradient like that in the Gulf Stream.

However, persistent alignment of sharp surface density

gradients and down-front wind is required to extract

sizable PV in the mean. This does not appear to be the

case in the Gulf Stream area where JFz is negative (at

least in the density range shown here). In very localized
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places (especially shelf water or the Grand Banks), JFz
can be large in the mean, showing values of the same

order of magnitude as JBz . This is due to the presence of

an intense density gradient (stronger than the one ob-

served in the Gulf Stream) because of the coexistence of

shelf and deep water.

Note that JWz can take only positive values (PV ex-

tracting). This term counterbalances JBz since these two

terms are of the same order of magnitude. Again, this

term is maximum in summer as it scales with u3*/h
2.

We now compare the sum of these three terms Jsumz

(Fig. 3e) with the full vertical PV flux Jz (Fig. 3a) com-

puted using Eq. (8). This comparison tends not to support

the classically used Eqs. (9)–(11). The estimates are

different in many aspects.

d The large-scale pattern is different. Whereas for Jsumz

the PV extraction/input occurs in the entire basin, for

Jz it is concentrated in the western part.
d The shallow water zones are completely different.

This is probably due to the interaction between the

mixed layer and the bottom topography leading to a

completely different scaling than the one proposed in

Eqs. (9)–(11) (see, e.g., the Grand Banks region or the

continental shelf where the water is less than 100m

deep).

FIG. 3. Maps of mean values of the different components of the Jz vector on the 26.06 0.25 outcropping window:

(a) k � ($B3$s) in Eq. (3), (b) JBz , (c) J
F
z , (d) J

W
z , and (e) the sum of these the terms in (b)–(d). Units are kgm23 s22.

The color bar is the same for all panels.
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d More fine structures occur in Jz than Jsumz . The

filaments present in Jz seem to be the signature of

the eddy field that is barely visible in Jsumz .
d The overall magnitude of Jz is smaller than Jsumz .

Moreover, the spatial mean of Jz is positive (PV

extraction) and the spatial mean of Jsumz is negative

(PV input).

A visual comparison between these maps shows that

the Fig. 3a [k � ($B3$s)] and Fig. 3c (JFz ) have the

same large-scale pattern. Although the correlation be-

tween these two maps is 0.35, it is likely that the me-

chanical input of PV (via JFz ) is a nonnegligible source

of PV (in terms of accumulated contribution).

In this section, we validated Eq. (3) for the day-to-day

PV flux and Eq. (8) for the mean PV flux. We also

demonstrated that the use of scaling laws is inaccurate to

measure precisely the surface PV flux.

3. Interior circulation

Once PV is injected at the surface, it either circulates

in the ocean interior or is re-extracted during the same

annual cycle (or perhaps some years later). We now

examine the main pathway of PV circulation and the

different processes associated with its circulation.

a. The isopycnal formalism

The impermeability theorem states that PV, defined

as in Eq. (1), does not cross surfaces of constant s. This

leaves open many choices for s. Historically, the most

natural choice is potential density, to draw connections

with theory and because of the dynamical importance of

density. There are issues that arise with this choice,

however, in a model employing a real equation of state.

We adopt potential density in this paper to connect with

the literature, but point out the consequences of this

choice in the following analysis (see also Marshall et al.

2001).

Since an isopycnal surface is impermeable to PV, the

latter can only circulate within this layer. The momen-

tum equations in density coordinates are

›u

›t
2 y(yx 2uy1 f )1Hus 52Bx1

F

r0
rx 1Fx and

(12a)

›y

›t
1 u(yx2 uy1 f )1Hys 52By1

F

r0
ry1Fy , (12b)

withH5Ds/Dt being the diabatic source andF5 gz as

the geopotential (Bleck 2002; Griffies 2004). Spatial

derivatives are taken along constant s surfaces, but we

keep the same notation for the other terms. A subtle

point is that at a given location, these equations literally

might not exist for a given isopycnal. This occurs at

a given point if, for example, the fluid column is all

denser than the target isopycnal. If for the moment we

restrict ourselves to locations where the isopycnal in

question always is found, time averaging the equations

removes the time derivatives, resulting in

2yzsq1Hus 2Fx 2
F

r0
rx52Bx and (13a)

uzsq1Hys 2Fy2
F

r0
ry52By . (13b)

The left-hand side is recognized as the flux form of PV

in density coordinates and the mean Bernoulli function

is identified as the streamfunction for the generalized

PV flux. It is then a simple matter to show that

=2B5
›Jy

›x
2
›Jx

›y
, (14)

with Jy and Jx being the meridional and zonal compo-

nents of the PV flux in density coordinates,

Jx 5 uzsq1Hys 2Fy2
F

r0
ry and (15a)

Jy5 yzsq2Hus 1Fx 1
F

r0
rx , (15b)

as written on the lhs of Eq. (13). We keep the same

notation as in the previous section: even though this

applies in a density coordinate system rather than a

geopotential coordinate system, the interpretation re-

mains the same.

The relation between the Bernoulli function and the

mean circulation of PV has already been demonstrated

by Sch€ar (1993) and used by Maze and Marshall (2011).

However, the formulation of Eq. (14) provides a use-

ful framework to diagnose and understand the PV

circulation.

Solving the elliptic Eq. (14) with the Neumann

boundary conditions (›B/›x and ›B/›y) given in Eq. (13)

yields the mean Bernoulli function (see the appendix for

the method used to solve this equation). Of course, it is

also possible to construct the Bernoulli function directly

from the output of an OGCM. We perform this com-

putation as well, but argue that using both procedures

has an advantage. An issue with the Bernoulli is that it

involves two enormous but opposite-signed inputs (the

pressure and the quantity rgz). The dynamical content
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in the Bernoulli is actually much smaller than either

of these by a factor of 10 000 (McDougall 2003). Given

the inherent errors in a numerical model, it is not

obvious a priori that the Bernoulli constituted from

the numerical data would be accurate. In contrast, the

present approach based on the elliptic equation relates

the Bernoulli solely to the dynamical state of the

model. Of course, solving an elliptic equation is more

difficult than simply creating the Bernoulli, so each

technique offers some advantages. Last, we point out

that the elliptic operator also allows us to compute the

contributions to PV streamfunction from each of the

contributing terms: we can explicitly compute the roles

of the advection, diabatics, or equation of state [see

Eq. (5)].

b. PV circulation map

To validate this technique for finding the Bernoulli

function, we plot in Fig. 4 the mean Bernoulli function

for 1997 projected on layer 26.0. The northern boundary

of the computational domain is given by the southern-

most position of the outcrop during 1997 (red line). The

two sets of contours (thick solid and thin dashed lines)

show the two different methods used to compute the

Bernoulli function. The thick lines are the result of the

elliptic equation [Eq. (14)] and the thin lines are obtained

with direct calculation [Eq. (4)]. A constant is added to the

solution of the elliptic equation to match the Bernoulli

contours obtained with the direct calculation (this un-

known is due to the Neumann boundary conditions).

The two estimates of the Bernoulli function agree to

within a few percent, which argues for our purposes

that either estimate will suffice.

As for the shape of the Bernoulli contours, we rec-

ognize the main features of the subtropical gyre: the

Gulf Stream at the western boundary separates

at Cape Hatteras and the return flow occurs at all

longitudes.

As mentioned earlier, an advantage of solving the

elliptic equation is to quantify the impact on the stream-

function of each term of the total PV flux. It appears that

this field is almost exclusively due to the advection term

on this surface. The effect of diabatic heating [H in

Eq. (13)] is very small (four orders of magnitude lower).

We expect that the ocean interior is largely adiabatic,

hence this result agrees with our intuition. The new in-

formation here is that the ocean interior, as computed

within the NEMO framework, also behaves in a largely

adiabatic manner with regard to this important dynam-

ical variable.

We do not explicitly compute the impact of ‘‘friction.’’

Indeed, this effect is expected to be weak. The confir-

mation of this expectation appears in that the Bernoulli

functions computed using our two different approaches

are very nearly identical. In principle, friction is an input

to the directly constructed Bernoulli function. The ab-

sence of friction in our elliptic inversion, coupled with its

coincidence with the direct Bernoulli function, implies

that friction is a weak effect.

c. Evolution of the circulation with depth

The projection of the Bernoulli contours on the con-

secutively deeper 26.0, 26.25, and 27.0 isopycnals ap-

pears in Fig. 5 and a surprisingly large impact of

thermobaricity appears. For the relatively shallow

layer (26.0), the mean circulation of PV is clockwise, in

agreement with the global circulation pattern of the

subtropical gyre. Using the decomposition of Eq. (13),

we obtain that this pattern is mostly the result of the

advection term. As we go deeper, the circulation

weakens. For the mode water layer (26.25), net PV

circulation is quite weak. Thermobaricity, however, is

still weaker than advection (not shown). This result is

further analyzed in D13. The last panel of Fig. 5 is quite

different from the previous two. The circulation of PV

is reversed (counterclockwise) and much more intense

(the contour interval is the same in all panels). Again,

using the decomposition of Eq. (13), this circulation

results mostly from the thermobaric effect. In fact,

because of the presence of mode water, the depth of

this isopycnal surface varies from 700 (below the mode

water) to 300m elsewhere. This variable depth is re-

sponsible for a large in situ density gradient on this sur-

face and creates a counterclockwise PV circulation on

this density surface.

As mentioned by McDougall (1989), these plots can

be counterintuitive because of the thermobaric effect,

and the nature of this term depends on the choice of the

FIG. 4. Mean Bernoulli function for year 1997 on 26.0. Solid lines

are obtained with Eq. (14) and thin dashed lines are obtained

with Eq. (4). The contour interval is 0.5m2 s22. The computational

domain is bounded by the southernmost position of the outcrop

(red line).
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variable s. If s were chosen as r, the thermobaric term

would vanish, but then the source term H in the ther-

modynamic equation would contain a contribution from

the material derivative of the pressure. In a previous

study, Marshall et al. (2001) also mentioned this in-

creasing role played by thermobaricity for deep isopycnal

surfaces.

d. Sinks and sources of PV

The Bernoulli function can also be used to diagnose

the mean PV flux at the intersection of the density layer

with the topography. The isopycnal flux of PV through

a closed contour C away from the boundaries is given by

F 5Ds

ð
C
J � n , (16)

with n being the unit vector outward pointing normal to

the contour and Ds5 s22 s1 being the thickness of the

layer. This factor is added as a result of the vertical in-

tegral of the PV flux over the thickness of an isopycnal

layer. Since the mean PV flux is nondivergent in regions

of the ocean equatorward of outcrops and topographic

incrops [see Eq. (13)], the divergence theorem implies

that F is zero for any contour C that closes within such

regions in the fluid.

Consider now an arc from a closed contour bounded

by points P1 and P2. The flux through this contour is

F 5Ds

ðP
2

P
1

J � n5B(P2)2B(P1) . (17)

We use this to diagnose the topographic PV genera-

tion. Consider the contour in Fig. 6, consisting of the

topographic boundaries of the 26.0 isopycnal, the

equator, and the position of the southernmost outcrop.

For our numerical evaluation, we consider a layer of

thickness Ds 5 0.5. The net PV flux through this con-

tour is zero since it is a closed contour. The values of

the Bernoulli function on that contour are plotted in the

second panel of Fig. 6 with the numbers matching the

numbers of the first panel.

Starting at point 3 and moving counterclockwise to

point 7, an arc that involves topographic interactions

with South America and the cross-equatorial PV flux,

the Bernoulli function is seen to be almost constant.

Equivalently, this is almost a mean PV flux streamline,

implying that the PV on this density surface is isolated

from the Southern Hemisphere. From point 7 to 12, the

Bernoulli function increases considerably. The map in-

dicates that this is a net input of PV due to the at-

mosphere, as these streamlines all emanate from the

southernmost outcrop line. The Bernoulli function in-

crease along this arc is consistent with a southwestward

flux of PV, in agreement with the overall sense of gen-

eral circulation. We could essentially drop a line from

point 12 to 4, with the Bernoulli difference between the

two of 4m2 s22 being the net westward PV flux of the

subtropical gyre, with about half entering the Caribbean

Sea and a significant amount of the rest following the

FIG. 5. Bernoulli contours projected on three different

isopycnals: (a) 26, (b) 26.25, and (c) 27. The arrows indicate

the direction of the circulation. The contour interval is

0.75m2 s22.
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Antilles Current to the east of the Bahamas. Moving

counterclockwise from point 15 to 4 is a mild Bernoulli

increase of about 1m2 s22. These are locations where the

isopycnal grounds into the subsurfaceGulf ofMexico, so

we here see injection into the gyre of PV from topo-

graphic sources. The increase here is consistent with an

eastward flux of positive PV.

However, clearly the major action in the figure occurs

between points 14 and 15. The line between points

14 and 15 defines the East Coast of North America up to

the point of Gulf Stream separation. One sees a growth

of the Bernoulli function moving counterclockwise on

the curve from Cape Hatteras to the tip of Florida that

compares in size to that occurring over the interior of

the open Atlantic. These Bernoullis, from about 21.5

to 26m2 s22, have no counterparts along the surface

outcrop and are thus unambiguously identified as of

topographic origin. Equivalently, the sharp Bernoulli

decrease from point 13 to 14 consists of recycling of

interior PV (from Bernoullis 4 to 21.5m2 s22) and

the expulsion of topographically created PV (from

Bernoullis 21.5 to 25.5m2 s22) in roughly equal parts.

What is the fate of the topographically generated PV?

The Bernoulli contours show that the topography is

connected directly to the outcrop. The northern topo-

graphic input, north from Cape Hatteras to Newfound-

land, forms its own circuit, directly from the generation

site to the outcrop and is seemingly disconnected from

the larger subtropical circulation. The U.S. East Coast

PV injection takes a fast path into an area that in the

mean experiences atmospheric interaction. This appears

in Fig. 7 where a detailed view of the regional Bernoulli

function appears superimposed on a map of the atmo-

spheric PV injection. North of the outcrop, the PV flux

is, strictly speaking, no longer nondivergent. Equiva-

lently, the time-mean flux is the combination of two

inputs, one from a streamfunction represented by the

mean Bernoulli function and one from a velocity po-

tential determined by atmospheric exchange. It is our

experience that the vector sense of the PV flux is well

approximated by lines of constant Bernoulli, so the

sense of Fig. 7 is that the topographically generated PV

enters a region of net extraction dominated by convec-

tion. In this sense, the topographically generated PV

takes a fast path, entering at subsurface isopycnal in-

crops, moving north in the Gulf Stream to an atmo-

spheric interaction that draws it out of the fluid. Viewed

in terms of PV dynamics, part of the large region of heat

loss in the separated Gulf Stream exists to balance the

PV flux input to the gyre by the topography.

The regional net loss of PV appears to be stronger

than the topographic injection. Overall balance on this

isopycnal layer involves interactions of the recirculating

fluid with regions of both injection and extraction of PV.

FIG. 6. (a) Mean Bernoulli contours projected on the isopycnal

26.0. (b) Value of the Bernoulli function on the boundary. The red

numbers refer to positions on the contour in (a).

FIG. 7. Mean Bernoulli contours and Jz (colors) for layer 26.0.
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Specifically, the recirculating PV near the Gulf Stream

enters a region of net PV injection associated with the

late winter early spring period. This injection is largely

balanced by extraction just to the north. The recircu-

lating fluid continues moving anticyclonically around

the region of atmospheric interaction through a broader,

but weaker, zone of PV injection. The fluid then exits the

region of outcropping, anticyclonically winds around the

gyre and shoots back into the atmospherically domi-

nated PV forcing region.

e. The role of eddies

It results from the comparison of the directly com-

puted Bernoulli function [Eq. (4)] and the Bernoulli

function given as the solution of the elliptic equation

[Eq. (14)] that the PV flux in the ocean interior is dom-

inated by advection down to about 26.25 (cf. Fig. 4).

Deeper than this thermobaricity sets in as a dominant

factor, but we for now consider a decomposition of the

PV flux in the shallower layers to comment on the role of

the eddies. Such decompositions have been used to pa-

rameterize the role of the eddies in coarse-resolution

models (Greatbatch 1998). The technique normally em-

ployed is a thickness-weighted averaging, that is,

Q5 Q̂1Q00 and (18a)

Q̂5
zsQ

zs
. (18b)

With this,

zsQu5 zsQ̂û1 zsu
00Q00 , (19)

which decomposes the advective flux of PV in Eq. (13)

into mean and eddy advection of PV (see also D13). The

contribution from each to the Bernoulli function is ob-

tained by solving an elliptic equation of the type of

Eq. (14) where the right-hand-side forcing is built from

one of the two parts instead of the full J vector. The same

(reduced) advective component is used as boundary con-

dition for the elliptic equation.

The solution so obtained is not unique because the

boundary conditions can always be modified by a func-

tion that introduces no curl [see the discussion inPeterson

andGreatbatch (2001)]. For that reason, we refer to these

components as pseudo-Bernoulli contributions. Even

though this ambiguity exists, we remark that the curva-

ture of the field we compute will be unaffected by the

boundary conditions, and hence the locations of extrema

are unique. We will confine our interpretation of the

pseudo-Bernoulli functions focusing on the extrema. We

have also verified that the sum of all pseudo-Bernoulli

functions obtained by solving the elliptic equation forced

by the components of the flux corresponds to the total

Bernoulli field with a maximum error of 10%. The full

Bernoulli field was almost entirely recreated by the

advective pseudo-Bernoulli functions and the ther-

mobaric component.

In Fig. 8a we plot the pseudo-Bernoulli function due

to zsQ̂û and in Fig. 8b the pseudo-Bernoulli function

due to zsu00Q00. The main part of the PV circulation is

due to themean flow (note the different contour interval

for the second panel). The eddies aremostly active in the

Gulf Stream where they act to enhance the circulation

set up by the mean flow.

This contribution of the eddies to the circulation of PV

makes no statement about their flux divergence. This

property is indeed a crucial component of the PVdynamics

and is examined for the Eighteen Degree Water in D13.

To get a better understanding of the eddy contribu-

tion, we decompose this field into an along-gradient (of

mean PV) component and an along-mean contour (or

equivalently cross gradient) component

FIG. 8. Pseudo-Bernoulli function: (a) mean component of the

advective part of the Bernoulli function and (b) eddy component.

All plots are for isopycnal 26.25. The contour intervals are

0.25m2 s22 for (a) and 0.05m2 s22 for (b).
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zsu
00Q0052k$Q̂2 n$3 Q̂ . (20)

We evaluate k and n according to

k52
zsu

00Q00 � $Q̂
j$Q̂j2

and (21a)

n52
zsu

00Q00 � $3 Q̂

j$Q̂j2
. (21b)

Maps of k and and n appear in Fig. 9. These maps are

very similar to those presented by Eden et al. (2007) for

buoyancy fluxes. The downgradient property is mainly

observed in the center of the subtropical gyre with a co-

efficient k on the order of 3000m2 s21. In the Caribbean

Sea, k is more intense. It is indeed a region of more

intense eddy activity (Jouanno et al. 2008). The core of

the Gulf Stream is dominated by an upgradient com-

ponent (negative k). Interestingly, this region coincides

closely with the region of topographically created

potential vorticity. The global spatial average of k

is 1000m2 s21.

The cross-gradient component is a sizable component

of the total field zsu00Q00. It is at a maximum in the Gulf

Stream core with values exceeding 10 000m2 s21 and

corresponds to an enhanced circulation of PV due to

the eddies.

This mean/eddy decomposition is used in D13 to ex-

plain the maintenance of subtropical mode water. It is

shown there that while the mean flux of PV is directed

outward of themodewater, it is balanced by an eddy flux

of the same magnitude directed in the opposite way.

4. Conclusions

In this paper, we clarify the pathways of PV in the

NorthAtlantic subtropical gyre. To address this topic we

separate the in-/output flux from the interior circulation.

a. Surface fluxes

We show that evaluating the PV input via air–sea in-

teraction is not a trivial computation and must be ad-

dressed with care. In section 2, we argue that the scaling

laws for the vertical PV flux at the surface (Fig. 3) are not

accurate. They demonstrate skill in the wintertime, but

yield inaccurate estimates in the summertime because

of their sensitivity to mixed layer depth (Fig. 1). The

complete formulation of flux is also hard to compute

even from model outputs due to its dependence on

nonconservative effects. The alternate formulation of

the flux proposed in Eq. (3) is considerably simpler to

use and returns generally more reliable estimates for the

PV flux. We do remark, however, that computing the

time-dependent flux accurately requires high-frequency

observations of sea surface density to avoid aliasing. We

compute mean PV budgets for several density classes

(Fig. 2), using Eq. (8) to compute the air–sea PV flux.

We show that for the density classes of the subtropical

wind-driven gyre (from 24.0 to 27.0), the ocean loses PV

at the air–sea interface. The annual mean remains very

small compared to the daily PV flux.

b. Ocean interior

The PV circulation in the interior is diagnosed using

density coordinates, which reveals the importance of the

Bernoulli function in describing themean flux of PV [see

Eqs. (13) and (14)]. This set of equations permits the

computation of the Bernoulli function in an indirect way

by solving an elliptic equation. We validate this com-

putation by comparing the Bernoulli functions ob-

tained using direct and indirect computation (Fig. 4).

This novel technique allows us to directly connect the

Bernoulli to its dynamical content and can indepen-

dently quantify the amplitudes of the several contri-

butions to PV flux.

The evolution of the Bernoulli contours with depth is

plotted in Fig. 5. This figure reveals a surprising feature

of the mean PV circulation in deep layers. We showed

FIG. 9. Values of (a) k and (b) n (m2 s21) computed using Eq. (21).

A 18 boxcar filter has been applied to smooth the data.
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that the thermobaric effect is responsible for over-

whelming the clockwise circulation produced by ad-

vection and setting up a strong counterclockwise PV

circulation (Fig. 5). The mode water layer (26.25) ap-

pears to be a layer of very weak circulation. This point is

further investigated in D13.

Figure 6 argues that the dominant behavior of the PV

is to recycle in the interior. The PV route for this com-

ponent of the circulation consists of atmospheric input in

the central and eastern parts the North Atlantic and

atmospheric extraction in the west after a circuit in the

gyre. Farther west, against the U.S. East Coast, PV is

input to the gyre from topographic sources, and then

follows a short path to extraction where convective ac-

tivity is driven by buoyancy exchange with the atmo-

sphere (Fig. 7). The magnitude of the topographic

production is comparable to that of the surface PV flux.

Finally, the role of eddies is investigated in terms of

the proposition of Rhines and Young (1982) that they

promote downgradient transport. We found mean values

for the eddy PV diffusivity of k 5 1000m2 s21 (Fig. 9).

The primary departure fromdowngradient flux occurred

in the western boundary layer, in the zone affected by

topographically generated PV flux. The cross-gradient

component of the eddies is far from negligible in the

Gulf Stream, although this contribution is not yet fully

understood.

c. Discussion and implication for future work

A full exploitation of Eqs. (13) and (14) requires an

accurate method for the Helmholtz decomposition to

decompose each contribution into a rotational part and

divergent part. This decomposition is not unique and

we are now developing a method to find the physically

relevant rotational part and divergent part of a vector

field (see also Fox-Kemper et al. 2003).

The interaction with the topography and the process

by which PV is created is not yet fully understood. We

are now trying to address this topic using high-resolution

models. However, in contrast to surface PV flux that can

be estimated from data, it is not currently possible to

compare theoretical (or model) values of the PV flux at

the topography with observed PV fluxes.

A direct application of this work can be found in D13.

The results obtained here are used to explain the mode

water dynamics.We show that the vertical component of

the J vector does not play a direct role in mode water

formation. The creation of low PV water mass is instead

more directly related to the surface buoyancy flux.

Acknowledgments. We thank the Drakkar team and

especially A.-M. Treguier, J.-M. Molines, and T. Penduff

for providing their dataset and the associated diagnostic

tools. T. J. McDougall provided valuable input on the

subtleties of the Bernoulli and two reviewers provided

perceptive comments. The work reported here was spon-

sored by NSF Grant OCE-0960500.

APPENDIX

The Elliptic Equation Solver

The resolution of an elliptic equation in an irregular

domain is almost as straightforward as it is for a regular

(rectangular) domain. We tackle this problem using di-

rect computation of the type used by Gibou et al. (2002)

rather than the immersed boundary condition described

by Pares-Sierra and Vallis (1989).

Let us consider the Poisson equation

Dc5 f , (A1)

that we want to solve in the discretized domain V with

Neumann boundary condition. Using a second-order

differentiation scheme to solve this equation, one can

write, away from the boundary,

1

e1ti,je2ti,j

 
e2ui,j

Ci11,j 2Ci,j

e1ui,j
2 e2ui21,j

Ci,j 2Ci21,j

e1ui21,j

1 e1yi,j

Ci,j11 2Ci,j

e2yi,j
2 e1yi,j21

Ci,j 2Ci,j21

e2yi,j21

!
5Fi,j ,

(A2)

with e1ui,j, e1yi,j, . . . , being the grid steps of the curvilinear

C grid at the location (i, j), as defined in Madec (2008).

Near a boundary, the derivative is simply prescribed:

for example, suppose we are at a boundary such thatCi,j

is in the domain and Ci11,j is not. Then, the first term in

Eq. (A2) is replaced by the boundary condition

Ci11,j1Ci,j

e1ui,j
5di11,j , (A3)

where di11,j is the prescribed boundary condition. Using

both Eqs. (A2) and (A3) permits us to write Eq. (A1) in

matrix form,

AC1B5F , (A4)

with B the matrix containing the boundary condition.

Since A is pentagonal, almost symmetric, it is easy to

invert to get the solution C. In our case, the field is first

interpolated on a regular latitude–longitude grid. Then,
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we use the direct LU solver of matrix laboratory

(MATLAB) to invert A.
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