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ABSTRACT: The nonhydrostatic version of the mountain flow theory presented in Part I is detailed. In the near-neutral

case, the surface pressure decreases when the flow crosses the mountain to balance an increase in surface friction along the

ground. This produces a form drag that can be predicted qualitatively. When stratification increases, internal waves start to

control the dynamics and the drag is due to upward-propagating mountain waves as in Part I. The reflected waves never-

theless add complexity to the transition. First, when stability increases, upward-propagating waves and reflected waves

interact destructively and low-drag states occur. When stability increases further, the interaction becomes constructive and

high-drag states are reached. In very stable cases, the reflected waves do not affect the dragmuch. Although the drag gives a

reasonable estimate of the Reynolds stress, its sign and vertical profile are profoundly affected by stability. In the near-

neutral case, the Reynolds stress in the flow is positive, with a maximum around the top of the inner layer, decelerating the

large-scale flow in the inner layer and accelerating it above. In the more stable cases, on the contrary, the large-scale flow

above the inner layer is decelerated as expected for dissipated mountain waves. The structure of the flow around the

mountain is also strongly affected by stability: it is characterized by nonseparated sheltering in the near-neutral cases, by

upstream blocking in the very stable case, and at intermediate stability by the presence of a strong but isolated wave crest

immediately downstream of the ridge.
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1. Introduction

The impact of small- to medium-scale mountains on atmo-

spheric dynamics is extremely sensitive to the stratification. In

neutral flows, the atmospheric boundary layer stress changes

the flow and hence the surface pressure on either side of the

mountain. This produces a form drag that will in turn drive an

exchange of momentum between the atmosphere and the

Earth’s surface (Hunt et al. 1988). This pressure drop on the lee

side is associated with an effect of downstream sheltering. For

obstacles with small slopes, the sheltering is nonseparated, but

for obstacles with larger slopes, this sheltering is separated

(Reinert et al. 2007) and can cause the formation of banner

clouds (Voigt and Wirth 2013). The dynamical regime in the

stably stratified case is fundamentally different because inter-

nal gravity waves create a drag even in the absence of boundary

layer (Durran 1990). For small mountains, the asymmetry in

the fields near the surface is such that the flow decelerates

upstream, and it accelerates downstream. This can cause a

form of nonseparated upstream blocking with strong down-

slope winds (Lott et al. 2020, hereafter Part I). For large

mountains, the situation is different because the associated

waves approach breaking, a dynamics that produces separated

upstream blocking and strong downslope winds [see recent

examples in Pokharel et al. (2017)]. To summarize and from a

qualitative point of view, two radically different flow regimes

occur above a mountain: on the one hand, we assist to the

development of strong upslope winds in neutral case, and on

the other hand, we see strong downslope winds in the

stratified case.

Although the two type of dynamics in the neutral and

stratified case are today quite well understood, it remains un-

clear what parameter characterizes the transition between the

two regimes. For small mountains, the seminal paper of

Belcher and Wood (1996) describes a transition from form

drag to wave drag that occurs when the Froude number Fm 5
U(hm)/N(hm)/L ’ 1 (with U the incident flow velocity, and N

the Brunt–Väisälä frequency measured at a midlayer height

hm; see henceforth). When the Froude number Fm , 1, the

dynamics is neutral and the drag is a form drag, but when Fm.
1 this form drag is replaced by a wave drag. Belcher and Wood

(1996) also shows that the wave drag is that predicted by in-

viscid theory, if we take for incident flow parameters those at

the midlayer height hm, an altitude where the disturbance dy-

namics is inviscid and largely controlled by the curvature of the

background wind. Mathematically, for a mountain of charac-

teristic horizontal scale L, hm is the altitude where the ray of

curvature of the background wind equals L:

u
0
(h

m
)

u
0zz

(h
m
)
5L2 , (1)

u0 and u0zz being the background wind and its second vertical

derivative, respectively. While Belcher and Wood (1996) do

not describe the transition in terms of upstream/downstream

separation (upstream separation indicating blocking), the

theoretical analysis of Ambaum and Marshall (2005) shows

that neutral flows separate on the lee side and that this
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separation is largely inhibited in the stable case, or, more

precisely, that it occurs much farther on the lee side beyond the

first lee-wave trough and upstream the mountain crest. This

leeside separation and, more generally, the interaction be-

tween the boundary layer and mountain waves are central in

the development of downstream rotors (Doyle and Durran

2002; Sachsperger et al. 2016).

Maybe because early theories on boundary layer flow

over mountains demand quite involved asymptotic analysis

(Belcher and Wood 1996), subsequent theories on the inter-

actions between boundary layer and mountain have often used

simplified representation of the boundary layer to remain

tractable (Smith et al. 2006; Lott 2007). To a certain extent,

these simplifications mirror the simplifications made in the

literature on stable boundary layer over complex terrain. In

such studies, the inviscid dynamics often boils down to that

above the boundary layer all the mountain waves propagate

upward without being reflected back (Belcher andWood 1996;

Weng 1997; Athanassiadou 2003). There is nevertheless a

growing effort in the community to analyze the interaction

between boundary layers and mountain waves (Tsiringakis

et al. 2017; Lapworth and Osborne 2019). These efforts are

motivated by the fact that present day numerical weather

prediction and climate models still make errors in the repre-

sentation of subgrid-scale orography (SSO) and because these

errors are at scales where neutral dynamics and stratified dy-

namics can no longer be treated separately [see discussion in

Serafin et al. (2018) and in Part I]. Also, a remaining issue in

SSO parameterizations still concerns the representation of the

vertical distribution of the wave Reynolds stress (Tsiringakis

et al. 2017; Lapworth and Osborne 2019), and existing theories

do not tell much about this.

To better understand this vertical distribution, we argued in

Part I that the theory in the simplest case with constant eddy

viscosity n needed to be developed beyond the historical pa-

pers [see Smith (1973) for the neutral case and Sykes (1978) for

the stratified case]. In fact, we showed in Part I that with con-

stant viscosity, we were able to predict the wave field with

uniform approximation over the entire domain. This permits us

to calculate altogether the mountain drag, the wave Reynolds

stress vertical profile, and the nonseparated structure of the

flow within the boundary layer (in the form of upstream

blocking and downslope winds). Using these solutions, we

showed that the wave pressure drag and stress can be deduced

from mountain-wave linear theory if we evaluate the back-

ground flow at the ‘‘inner layer’’ scale,

d5

 
nL

u
0z

!1/3

, (2)

with u0z the background wind shear. We insist that this inner

scale is distinct from a boundary layer height, the latter being

infinite in the constant shear case. In Part I, we also showed that

the wave Reynolds stress that radiates aloft the inner layer

(which total depth is estimated around 5d) is only a fraction of

the surface pressure drag: internal waves are substantially

dissipated when they travel through the inner layer and part of

the wave drag is deposited near the top of the inner layer. Last,

we showed in Part I that for mountains with heightH� d, the

wave stress is extracted from the boundary layer rather than

from the surface as in the inviscid case. This means that the

interaction between the boundary layer and the obstacle ac-

celerates the large-scale flow near the surface as waves are

emitted. Finally, for mountain with height H ’ d, we showed

that upstream blocking and downslope winds occur within the

boundary layer. Because we built our analysis on linear dy-

namics, these phenomena correspond to nonseparated dy-

namics by construction. They actually mirror the nonseparated

intensified upslope winds and downstream sheltering that oc-

curs in the neutral case.

A first limit of Part I is that we only considered upward-

propagating internal waves above the inner layer. This is a

serious limitation, reflected waves potentially affecting the

boundary layer when they return to the ground. A second

limit is that we only studied constant shear within the hy-

drostatic approximation. In this situation, the properties of

the inviscid solution make that we cannot study weakly

stratified situations and analyze the transition from neutral

to stratified flows.

The purpose of the present paper is, therefore, to work

with a nonhydrostatic model in order to analyze the case where

all the harmonics are reflected. As we shall see in section 2, this

happens with constant infinite shear in the nonhydrostatic

Boussinesq approximation. In section 3, we describe a char-

acteristic wave field and extend the mountain-wave drag pre-

dictor proposed in Part I to the neutral case. We demonstrate

that we need to substitute it by a form drag for small values of

the Richardson number (J , 1). We analyze the transition

from neutral to stratified situation for small slopes in section 4

and show that reflected waves can interact destructively or

constructively with the surface when J ’ 1 yielding low-drag

and high-drag states. We then analyze in section 5 the action of

the waves on the large-scale flow and show that this action

differs between the neutral cases and the stratified cases. In

section 6, we describe situations with slopes comparable to the

inner-layer scale. In this case neutral flows are characterized by

strong upslope winds and nonseparated sheltering on the lee

side, whereas in stable case we recover the strong downslope

winds and upstream blocking found in Part. I. All our results

have been validated with the full nonlinear model used in Part

I, the results of which are mentioned throughout the paper. We

conclude and present perspectives in section 6.

2. Theory

Many elements are reminiscent of Part I, so we recall in this

section the general formulation and only emphasize the dif-

ferences. As in Part I, we consider a background flow with

constant shear u0z and constant stratification r0z

u
0
(z)5u

0z
z; r

0
(z)5 r

r
1 r

0z
z , (3)

incident on a Gaussian ridge of maximum height H and char-

acteristic length L:

h(x)5He2x2/(2L2) . (4)
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We then consider obstacles well embedded into the ‘‘inner’’

layer and use linear equations that we normalize by introduc-

ing the ‘‘outer’’ scaling:

(x, z)5L(x, z), (u0,w0)5u
0z
L(u,w),

( p0,b0)5 (r
r
u2
0zL

2p,u2
0zLb), (5)

where the primes are for disturbances and the overbars for

dimensionless variables. All notations are standard: x, z, u0, and
w0 have their conventional definitions, and b0 is the disturbance
buoyancy. The relevant nondimensional parameters are

J52
gr

0z

r
r
u2
0z

, P5
n

k
, S5

H

L
, and n5

n

u
0z
L2

, (6)

where J is a Richardson number, P is a Prandtl number, S is

a slope parameter, and n is an inverse Reynolds number.

Henceforth, we only work with nondimensional variables, and

the stationary 2D Boussinesq linear equations we use are as in

Part I except that the hydrostatic approximation [Eq. (5) in

Part I] is replaced by the equation for the vertical acceleration:

z›
x
w52›

z
p1 b1 n›2zw , (7)

At the topography, we use the three boundary conditions:

h(x)1 u(x, h)5w(x,h)5 Jh(x)1b(x,h)5 0 at h5Se2x2/2 .

(8)

The Boussinesq equations satisfy a wave action budget that is

slightly different than in the hydrostatic case:
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Q

, (9)

whereA is the pseudomomentum, Fx and Fz the horizontal and

vertical components of the pseudomomentum flux, and Q its

production/destruction by dissipative processes.

a. Outer solution

We then search inflow solutions in term of Fourier

transform, and for high Reynolds number (n � 1), the dy-

namics is inviscid at leading order. In this case the Fourier

transform of the vertical velocity, w(k, z), is solution of

Bessels’s equation,

w
zz
1

�
J

z2
2k2

�
w5 0: (10)

When the horizontal wavenumber k. 0, and J. 1/4 a bounded

solution in z/‘ can be expressed in terms of the Hankel

function,

w
I
(k, z)5 i

ffiffiffiffiffiffiffiffiffi
pkz

2

s
e2mp/2H

(1)
im (ikz), where m5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi����J2 1

4

����
s

.

(11)

A first major difference with the hydrostatic case is that we can

now treat the weakly stratified situations when J , 1/4 simply

by changing m in im. Also, in (11) we introduce the notation wI

to indicate that we choose a particular inviscid solution that is

scaled to behave like an exponentially decaying solution of

‘‘unit’’ amplitude in the far field [see (9.2.3) in Abramowitz and

Stegun (1964)]:

w
I
(k, z) ’

z/‘
e2kz . (12)

This also shows that all harmonics are trapped, which is an-

other major difference compared to the hydrostatic case

(in the latter case, all waves propagate upward without re-

flection). From this and the limiting form of the Hankel

functions when z/ 0 [see (9.1.9) in Abramowitz and Stegun

(1964)] we write the asymptotic form of the inviscid solution

near the surface as

w
I
(k, z) ’

z/0
w

M
(k, z)5 a

1
(k)z1/22im 1 a

2
(k)z1/21im, with (13)

a
1
(k)52

i
ffiffiffiffi
p

p
sinh(mp)G(12 im)

�
k

2

�1/22im

,

a
2
(k)5 a

1
(k)*. (14)

b. Inner solutions

To get the solutions in the inner layer, we introduce the

scaling

z5 d~z, (w,w)5 (~u, dk~w), ( p, b)5 (d~p, ~b), where

d5

�
n

k

�1/3

. (15)

At leading order and with this scaling, the inner-layer

equations are as in Part I [Eq. (16)] they can be reduced

to a sixth-order equation for ~w [Part I, Eq. (17)]. Among its

six independent solutions, only the three with asymptotic

form in ~z � 1,

~w
12
’ ~a

1
(k)~z1/22im 1 ~a

2
(k)~z1/21im,

~w
3
’ ~z25/4e2(2

ffi
i

p
/3)~z3/2 , ~w

4
’ ~z29/4e2(2

ffiffiffiffi
iP

p
/3)~z3/2. (16)

need to be considered. As in Part I, they are evaluated nu-

merically and the matching with the outer layer is simply done

by taking

~a
1
(k)5

a
1

k
d21/22im, ~a

2
(k)5 ~a

1
(k)*. (17)

This guarantees that ~w12 matches the inviscid solution wI ac-

cording to (13) and (15).

Next, we assume that the mountain is well in the inner

layer and use the inner solution to satisfy the lower
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boundary conditions (8). The equation for the vertical velocity

is written

w(x, h)’

ð1‘

2‘

k d(k)[ f
12
(k)~w

12
(k, ~h)1 f

3
(k)~w

3
( ~h)

1 f
4
(k)~w

4
( ~h)]eikx dk5 0, (18)

where ~h(x, k)5h(x)/d(k). Inversion of this integral equation

together with the two integral equations expressing the

boundary conditions on u(h) and b(h) permits us to evaluate

f12(k), f3(k), and f4(k).

Since we are now in the presence of an exact inviscid solu-

tion connected to a viscous solution via the matching function

~wM(k, z) we can follow conventional techniques to build a

uniform approximation. To do so, we express the viscous so-

lution in terms of the outer variables, for example, by writing

w
V
(k, z)5 k d(k)ff

12
(k)~w

12
[k, z/d(k)]

1 f
3
[(k), z/d(k)]~w

3
[k, z/d(k)]

1 ~w
4
(k, z)~w

4
[k, z/d(k)]g (19)

and use for w(k, z) the uniform approximation,

w(k, z)5 f
12
[w

I
(k, z)2w

M
(k, z)]1w

V
(k, z), (20)

again with similar expression for the horizontal wind and

buoyancy.

The solutions used in the following are then obtained via

inverse Fourier transform of the uniform approximations, and

as in Part I, we validate these solutions with nonlinear simu-

lations done with the MITgcm (Marshall et al. 1997). The

configuration of this model is essentially the same as in Part I

except that we run it in nonhydrostatic mode. All the 2D fields

(winds, buoyancy, streamfunction) from this model are es-

sentially the same as from the linear model so we will only plot

2D fields from the linear model.

3. Transition from form drag to wave drag

In Fig. 1 we plot the flow response when the slope parameter

S 5 0.01, is much smaller than the inner-layer scale d(1)5 0:1

and the Richardson number J 5 4. We also take a Prandtl

number P 5 0.5, that will stay unchanged in the remainder of

the analysis. Henceforth, we will call this case the reference

case. Note that these values are the same as in Part I to allow us

direct comparison between Fig. 1 here and its hydrostatic

counterpart (Fig. 1 of Part I).

The total wind at low level in Fig. 1a contours well the ob-

stacle and is null at the surface as expected. We plot in Fig. 1b

the vertical velocity field that highlights a system of gravity

waves. In the upstream region x, 0, the phase lines tilt against

the shear indicating upward propagation, directly above the

hill the wave phase lines are more vertical, and downstream

they become tilted in the direction of the shear indicating down-

ward propagation. Such structure suggests that the mountain

FIG. 1. Physical fields predicted by the viscous theory when J 5 4, S 5 0.01, and d5 0:1. (a) Total wind vector

(z1u, w). (b) Vertical wind w. (c) Total streamfunction c defined by ›zc5 z1u. (d) Vertical flux of action Fz

and action flux vector (Fx, Fz). In (b) and (d), the negative values are dashed.
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produces upward-propagating gravity waves, that these waves

are entirely reflected in the far field (the waves phase lines tilt

downstream is almost symmetric and opposite to their upstream

tilt) and are almost entirely absorbed when they return to the

surface (the wave amplitude rapidly decreases when horizontal

distance increases). It is important to note that the amplitude of

the vertical velocity is of the same order of magnitude as the

amplitude predicted in Part I, which is the amplitude predicted by

linear theory if we take for the incident wind at the ground the

average of the incident wind over the inner-layer scale (d(1)/2).

In Part I, we interpreted that by the fact that over a distance equal

to the inner-layer scale, the viscous dynamics produces a flow that

streamlines have vertical displacements with amplitude near the

mountain height (as we see here in Fig. 1c), as a consequence, the

waves produced by the inner layer resemble the inviscid waves

produced by a lower boundary located at h(x)1 d.

Finally, the wave action flux in Fig. 1d confirms that the

waves are produced indirectly by the distortion of the inner

layer rather than directly by themountain (the wave action flux

in the inner layer is oriented from one side of the mountain to

the other). The orientation of the wave action flux aloft the

inner layer also corroborates the fact that over the obstacle the

waves propagate upward (the wave action flux points toward

the surface), whereas the wave field downstream is dominated

by downward-propagating wave (the wave action flux is ev-

erywhere pointing upward, Fz. 0). The fact that Fz. 0 almost

everywhere on the lee side is also consistent with the fact that

there is almost no surface reflection on the ground. This con-

trasts with Part I, where downward waves were excluded by

construction, such that in the hydrostatic case, we had Fz , 0

almost everywhere above the inner layer (see Fig. 1d in Part I).

In Part I, we noticed that predicting the wave amplitude with

linear inviscid theory was also useful to scale the mountain

waves stress and drag,

uw(z)5

ð1‘

2‘

u(x, z)w(x, z)dx, Dr52

ð1‘

2‘

p(x, h)
›h

›x
dx, (21)

More precisely, we found that the predictor

Dr
GWP

5
ffiffiffi
J

p
d(1)S2/2 (22)

provides a good description of the drag for a large range of

slopes S and forRichardson numbers J. 0.25. This scaling was,

however, based on hydrostatic theory, such that we cannot use

it for neutral cases (J� 1). In neutral cases, the mountain drag

becomes a form drag due to dissipative loss of pressure when

the air passes over the obstacle. To estimate this drag we next

make the conventional hypothesis that in the inner layer

the pressure varies little in the vertical direction and that the

horizontal pressure gradient balances the divergence of the

viscous stress,

›
x
p’ n ›2zu . (23)

If we then remark that in the inner layer the wind increases

from 0 (at the surface) to h (at the top of the inner layer), then

the surface wind shear should be on the order of h/d(1). We

can then estimate the form drag as a vertical integral of (23)

over the inner layer. We get d(1)›xp’2n h/d(1)52d(1)
2
h.

We can thus estimate the form drag as

ð1‘

2‘

h›
x
p dx’2

ð1‘

2‘

d(1)h2 52
ffiffiffiffi
p

p
d(1)S2 . (24)

Because this evaluation is qualitative and because the transi-

tion between stratified cases and near-neutral cases is more

likely occurring near J 5 1 we simplify the form drag predic-

tor in

Dr
FDP

5 d(1)
S2

2
. (25)

Then, following Belcher andWood (1996) we take as predictor

of the mountain drag and stress the maximum between (22)

and (25):

Dr
P
5Max(1,

ffiffiffi
J

p
) d(1)

S2

2
. (26)

We plot in Fig. 2 the mountain drag normalized by this pre-

dictor for several values of J and S. We see that the predictor is

quite accurate (the ratio is around 1) at least when the flow is

stable (J. 3) or neutral (J, 0.1). But there is a transition zone

when J’ 1, which seems quite rich dynamically. This transition

is characterized by a relativemaximumof the drag near J5 1.6,

and a relative minimum near J 5 0.7 that were completely

absent in the hydrostatic case [see the thin gray lines in Fig. 2

and remember again that, in Part I, (i) the cases with J , 0.25

were not treated, and (ii) that the reflected waves were absent

by construction]. To understand the physics behind the mini-

mumandmaximumvalues of the drag for intermediate values of

J, it is important to include the reflected waves in the discussion.

We recall that the altitude of dominant turning point of the wave

field, which is the turning point above which the dominant

wavenumber k5 1 becomes evanescent is zT(1)5
ffiffiffi
J

p
and so

increases with J. As J diminishes, waves are reflected closer to

the surface. The local minimum and maximum of the drag in

Fig. 2 correspond to a situation where the reflections occur at

altitudes close to the mountain horizontal scale [in dimensional

units zT(1/L)5
ffiffiffi
J

p
L)]. In these situations, the reflected waves

interact destructively and constructively with the emitted waves

FIG. 2. Surface pressure drag normalized by the predictor Drp in

(26). The hydrostatic pressure drag normalized by DrGWP from

Part I is also shown for comparison (thin gray lines). The gray dots

are from the MITgcm with S 5 0.15.
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to produce low-drag and high-drag states, respectively. When

the reflections occur higher, the reflected waves return to the

surface farther on the lee side, so their effect on the surface

pressure becomes small over the hill compared to that of the

upward-propagating waves.

4. Low-drag and high-drag states

To better appreciate what occurs when the flow is weakly

or moderately stratified, we plot in Fig. 3 the vertical ve-

locity and action flux in a weakly stratified case (J 5 0.1),

and in the two moderately stratified cases (J 5 0.7 and J 5
1.7) where the drag is respectively lower and larger than the

predictor. To ease comparison, we keep all the other pa-

rameters similar to those of the reference case (Fig. 1). In

the weekly stratified case, the vertical velocity is positive on

the upstream side of the ridge and negative on the down-

stream side. This pattern is similar to the neutral solutions

in the inviscid case with no vertical tilt. We also see in

Fig. 3b that the wave action flux stays confined inside the inner

layer: there is almost no flux of action through the height

z5 5d(1), which measures the inner-layer depth (see Part I).

FIG. 3. (a),(c),(e) Vertical velocity and (b),(d),(f) action flux [vertical component Fz and vector (Fx, Fz) for S 5
0.01. Contour interval for w in (a), (c), and (e) is as in Fig. 1b]. Contour interval for vertical component of the wave

action flux is as in Fig. 1d.

1106 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Unauthenticated | Downloaded 07/20/22 04:13 PM UTC



We conclude that in the neutral case, the drag cannot have an

inviscid wave origin.

For J5 0.7 in Fig. 3c one sees that the vertical velocity field

has still quite vertical phase lines but it extends significantly

higher above the inner layer than in the case with J 5 0.1.

Above the inner layer, one sees in Fig. 3d that there is sub-

stantial pseudomomentum fluxes, pointing upward on the

windward side and downward on the leeward side. Although

the local directions of pseudomomentum fluxes do not quantify

directions of propagation without ambiguity (in theory an ac-

tion flux is proportional to action times group velocity after

averaging over a wave phase), it is quite systematic that for

mountain waves a negative vertical component of the wave

action flux (Fz , 0) indicate upward propagation (although

there are variations from one wave crest to the other, as seen in

Fig. 1d of Part I). Accordingly, we state that regions above the

inner layer where Fz. 0 correspond to downward-propagating

waves, as seen in Fig. 3d on the downwind side of the hill. Still in

Fig. 3d, we notice that regionswithFz. 0 occupy about the same

area as regions with Fz , 0, as if the downward-propagating

waves were balancing almost exactly the upward-propagating

waves in terms of vertical flux of momentum. This balance

probably explains the minimum in pressure drag seen when

J ’ 0.7 in Fig. 2.

The case with J 5 1.7 in Fig. 3e presents substantial phase

line tilt, and a system of internal waves with two crests and

throughs. Upstream and above the ridge, the pseudomo-

mentum flux is quite strong and points downward, as expected

for upward-propagating waves. There is also large pseudo-

momentum flux above the inner layer that points upward but

this flux is located well on the downwind side, that is, as if the

reflected wave were returning to the surface further down-

stream than in the case with J 5 0.7. This is again consistent

with the fact that the characteristic altitude of the turning

points where the waves are reflected (ZT(1)5
ffiffiffi
J

p
) increases

with J. Interestingly, it seems that the downward waves in this

case return to the surface near enough downstream the

mountain to interfere with the surface boundary condition and

to produces large pseudomomentum fluxes and drag.

5. Waves Reynolds stress

The predictors of the surface pressure drag may not be very

useful if we take them as a measure of the effect of the

mountain on the large-scale flow, as generally done in moun-

tain meteorology (see discussion in Part I). The reason is that,

in a steady state, the wave pseudomomentum flux vector within

the inner layer is oriented from the upstream side of the ridge

toward the downstream side. This situation differs from the

inviscid case where this flux goes through the surface and

produces an exchange of momentum between the fluid and the

solid ground in the form of a pressure drag. In the hydrostatic

case, we concluded that the acceleration that balances the

gravity wave drag is not communicated to the Earth surface but

rather to the flow below around the inner-layer scale. As we

shall see, this is even more problematic in the nonhydrostatic

case because mountain drag does not necessarily lead to flow

deceleration above the inner-layer scale.

To understand how mountains interact with the large-scale

flow, we plot in Fig. 4 the vertical profile of the wave Reynolds

stress (in black), the pressure stress (gray) and the viscous

stress (dashed) acting along displaced streamlines. These are

the three terms of the balance equation derived in Part I:

uw52p›
x
h2 n (h›2zu), where z›

x
h5w , (27)

and that can only be estimated above the mountain top S. We

see in Fig. 4 that at low level, the Reynolds stress is small and

there is a balance between pressure and viscous stress. In the

inner layer, the magnitude of the Reynolds stress increases

with height, reaches an extreme and vanishes when z/‘ (as

expected because all harmonics are evanescent in z/‘).

FIG. 4. Vertical profiles of the Reynolds stress (thick line), pressure drag through streamlines (thick gray), and viscous drag through

streamlines (thick dashed); see the balance equation [Eq. (27)] and for S 5 0.01 and d5 0:1.
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What is remarkable is that in the near-neutral case J 5 0.1 as

well as in the low-drag case J5 0.7, the Reynolds stress uw. 0

is positive in the inner layer such that it should produce a de-

celeration of the large-scale flow in the lower part of the inner

layer [e.g., around z’ d(1)] and an acceleration of the large-

scale flow in the upper part [e.g., around z’ 3d(1)]. In the

stratified case (J . 1), we recover the standard result that

waves accelerate the large-scale flow in the lower part of the

inner layer and decelerate the large-scale flow above, as ex-

pected for mountain gravity wave drag (Figs. 4c,d).

It is clear from Fig. 4 that the interesting quantity is the

extreme value of the wave Reynolds stress rather than the

pressure drag itself. In fact, these extremes are always smaller

in amplitude, and even of opposite sign to the pressure drag.

We further explore the parameter space, and we plot in Fig. 5

these extremes normalized by the predictor of the pressure

drag (26) for different values of the slope and stability. We

conclude that our predictors overestimate by a factor of 3 the

extreme value of the Reynolds stress and more importantly

that the sign of the Reynolds stress extreme changes around

J 5 1: there is flow acceleration above the inner-layer scale d

when J, 1 and deceleration due to gravity wave drag when J.
1. These acceleration/deceleration are balanced by opposing

deceleration/acceleration below d(1), at least when S � d(1),

but these start to be partly transferred to the ground when

S’ d(1), as in Part I (not shown).

6. Transition from downstream sheltering to upstream
blocking when S’ d

To analyze further what occurs in the more nonlinear situ-

ations we next consider cases where the slope parameter

becomes comparable to the inner-layer scale d(1). We first

consider the upper limit S 5 0.185 beyond which our theoret-

ical model often diverges when d(1)5 0:1. We choose J5 0.01

to illustrate the neutral case and J5 9 to illustrate the stratified

case.We plot in Fig. 6 the streamfunction and the wind field for

these two cases as well as in the intermediate case where the

reflected waves impact strongly the surface conditions near

themountain (J5 1.7). In the near-neutral case (Figs. 6a,b), the

wind is intensified on the windward side and small downwind,

which correspond to a form of nonseparated sheltering. When

stratification increases, this upslope/downslope asymmetry re-

duces, up to around J 5 1: the low-drag case with J ’ 0.7, for

instance, is almost symmetric between the upstream and the

downstream side (not shown).

In situations with high drag (J5 1.7), the upslope/downslope

asymmetry is not much pronounced, at least on the streamlines

in Fig. 6c near the surface. Themost remarkable behavior is the

pronounced ridge occurring downstream around x5 4, which

corresponds to the strong positive vertical wind anomaly al-

ready present in the case with small slope and around the same

place (Fig. 3e). This pronounced oscillation cannot be attrib-

uted to trapped lee waves because these waves are not present

in our configuration: trapped waves are always related to

neutral modes of Kelvin–Helmholtz (KH) instability when the

wind vanishes at the surface (Lott 2016), and these modes do

not exist when the Richardson number is constant according

the Miles–Howard theorem (Miles 1961; Howard 1961). The

absence of trapped modes differs from the study of Keller

(1994), who first solved the Bessel’s equation to analyze in-

viscid trapped waves in constant shear cases. In Keller (1994)

nevertheless, the wind at the surface is nonzero. Lott (2016)

proposes that when the surface wind does not vanish, the sur-

face wind shear is infinite and the surface Richardson number

is null, so downward-propagating stationary waves can be en-

tirely reflected and neutral modes can exist.

In situations with strong stratification (J 5 9, Figs. 6e,f), we

recover the upstream blocking and downslope winds present in

the hydrostatic case in Part I, although in this case all the waves

are reflected toward the ground. We do not discuss the results

from the MITgcm, but we have used this model in all the

configurations with S 5 0.15 and S 5 0.185 presented in this

paper and the solutions from the nonlinear model are almost

identical to those shown in Fig. 6 (see also the thorough com-

parison in Part I, where the validation of the theory by the

model was excellent).

We propose one last index to characterize the downstream

sheltering versus upstream blocking as a function of S and J.

We define this index as the ratio between the wind amplitude

along the downwind slope and the upwind slope of the ridge

defined as

max|ffl{zffl}
z,2h/3,0,x,2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z1u)2 1w2

q

max|ffl{zffl}
z,2h/3,22,x,0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z1 u)

2 1w2

q , (28)

and we plot this index for several values of J and S in Fig. 7. As

in the hydrostatic case and for large values of J, this index can

easily reach values around 4 or 5 for slopes near the inner-layer

depth and larger. This ratio is always around 1 when J’ 1, as in

the hydrostatic case, except near the critical value J 5 1.7,

which corresponds to the high-drag scenario. For J , 1, the

ratio becomes smaller than 1, which corresponds to non-

separated sheltering. The smallest values we obtain are around

0.5 for J 5 0.01 and slopes S ’ 0.15.

FIG. 5. Extrema in Reynolds stress normalized by the predictor

Drp. Hydrostatic values normalized by DGWP from Part I are also

shown for comparison (thin gray lines). Gray dots are from the

MITgcm with S 5 0.15.
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7. Conclusions

a. Summary

The first result of our nonhydrostatic analysis confirm that of

Part I: the pressure drag in the stratified case is a wave drag to

be computed at the inner-layer scale. We extend it to the

neutral case, replacing the wave drag by a form drag that is also

predictable. We also show that the transition between the

stratified and neutral case is well captured by the Richardson

number and occurs around J5 1 [see Eq. (26)]. More precisely,

the wave drag predictor is well adapted to cases with J. 2, the

form drag predictor is well adapted for J , 0.5. A quite rich

transition occurs between 0.5 , J , 2, and when the reflected

waves deeply affect the surface condition producing low-drag

state and high-drag states at J ’ 0.7 and J ’ 1.7, respectively

(see Fig. 4).

Differences with Part I are more pronounced when we an-

alyze the vertical distribution of the Reynolds stress. In the

stratified case (J . 2), the low-level confinement of the waves

due to the nonhydrostatic terms make that there is no gravity

wave drag in the far field by construction. As we see in Fig. 4d

the wave drag is then deposited in the upper part of the inner

layer [roughly between 2d(1), z, 5d(1)], the maximum of

the Reynolds stress staying well predicted by the hydrostatic

FIG. 6. (a),(c),(e) Streamfunction defined by ›c/›z5 u1 z. (b),(d),(f) Total wind. In all panels S 5 0.185 and

d5 0:1. In (a) and (b) J 5 0.01, in (c) and (d) J 5 1.70, and in (e) and (f) J 5 9.00.
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theory. As in Part I, a fraction of the drag is extracted from the

lower part of the inner layer. In the more neutral cases when

J , 0.5 we find an opposite behavior, the Reynolds stress is

positive in the inner layer and so accelerates the large-scale

flow in the upper part of the inner layer, and decelerates the

flow in the lower part of the inner layer (see Fig. 4a).

Our results also indicate how the mountain modify the flow

around the obstacle when its height is comparable to the inner-

layer scale [S’ d(1)]. At large J� 1, the flow on the upstream

side is blocked, whereas the downslope winds are substantial in

the inner layer on the lee side, again as in Part I. At small J� 1

again, an opposite behavior is found, the obstacle produces a

region of calm flow on the lee side, while the flow is accelerated

along the upstream side, this is a form of nonseparated sheltering.

The high-drag state is characterized by a strong and unique wave

crest downstream near the top of the inner layer, illustrating

without ambiguity that a strong lee-wave crest well downstream

of themountain is not necessarily associated with the presence of

resonant trapped modes (see discussion in section 6).

b. Discussion

One motivation of this article is that state-of-the-art nu-

merical weather prediction and climate models parameterize

subgrid-scale orography (SSO) in the neutral case using tech-

niques derived from boundary layer parameterization schemes

(Beljaars et al. 2004) and treat the stratified cases separately

and using low-level wave drag schemes (Lott and Miller 1997).

The choice of one parameterization versus the other is en-

forced by ad hoc criteria (see introduction in Part I), so it seems

worthwhile revisiting the criteria for the transition between the

two regimes. Moreover, the standard model resolution of at-

mospheric models is such that we are today in a gray zone

between resolved and unresolved mesoscale orographic flows

(Vosper et al. 2016), and that this gray zone is at scales near the

transition scales between neutral and stratified conditions. In this

context, we demonstrated that the drag (wave drag or form drag)

can be predicted using linear theory and using flow parameters

evaluated at the inner-layer scale. For instance, and if one wish to

apply Eq. (26) in a large-scale model with parameterized turbu-

lent drag, one should evaluate the altitude at which the distur-

bance in turbulent drag equals the advection of the disturbance in

wind and calculate the background parameters of interest (inci-

dent wind, stratification, and dissipation) at this altitude. To take a

simple illustration, let us consider that the model in question use

eddy diffusivities based on mixing length theory,

n5L2

����
����du0

dz

����
����, with

1

L
5

1

kz
1

1

l
, (29)

where L is the mixing length of the undisturbed flow and k the

von Kármán constant. The inner-layer scale d at which ad-

vection equilibrates turbulent drag in the equation for the

disturbance wind is

u
0
(d)

L
5 2

L2

d2
du

0

dz
(d) . (30)

To adapt such an equation to realistic conditions, the back-

ground flow could be measured in the dominant direction of

the synoptic winds, and the characteristic scale L evaluated

from SSO parameters in this direction. Once done, and if there

is a need to consider real 3D mountains, a linear wave theory

could be used to predict the drag from Fourier analysis of the

SSO over the grid of interest. Note nevertheless that these are

just directions that could be worth testing. One could also re-

verse the analysis and use our neutral versus stratified flow

criteria to evaluate the scale L above which gravity waves

should be parameterized and below which boundary layer ef-

fects should be parameterized.

Other aspects could be worth to try to include in large-scale

models. For instance, we show in the stratified case (J. 1) that

the wave drag is deposited around the top of the inner layer

rather than below turning altitudes. This is to be contrasted

with papers in which trapped waves are not dissipated (basi-

cally in the absence of surface critical levels here), and where

the wave Reynolds stress decays with altitude up to the turning

heights, and to balance a downstream horizontal flux of pseu-

domomentum Georgelin and Lott (2001). An important dif-

ference with Georgelin and Lott (2001) is that our solutions do

not include pure trappedwaves (see discussion in section 6). As

we shall see in Part III, when suchmodes are present, the depth

of the inner layer will still be that over which the wave drag is

redistributed once the waves are all dissipated. This questions

the way low-level drag due to trapped lee waves should be

parameterized in models (Teixeira et al. 2013).

Another aspect worth noticing is the flow deceleration at

low levels seen in the neutral case and that is equilibrated

by a flow acceleration at the top of the inner layer. It is

strongly reminiscent of the concept of envelope orography

introduced by Wallace et al. (1983), where SSO is not

necessarily represented by pure drag forces but rather by

forces that higher up the lower bound of the model without

necessarily decelerating the large-scale flow (Lott 1999).

This low-level deceleration and high-level acceleration are

the opposite of what occurs in stable cases where the stress

is due to gravity waves.

c. Limitations

A first limit of our results is that they assume linear fields

above the surface and small slopes, so it could be argued that

FIG. 7. Downslope sheltering vs upstream blocking index defined

as the ratio between the max downslope wind amplitude and the

max upslope wind amplitude [see Eq. (28)]. Gray dots are from the

MITgcm with S 5 0.15.
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they cannot be applied in the context of parameterization of

real mountains. To moderate such critics, we can recall that we

have tried to extend our calculation up to the limit where the

mountain height and the inner-layer height compare. We can

also recall that parameterizations are always based on linear

theories, and are then adapted to nonlinear configurations by

comparing the vertical scales of disturbances and the height of

the obstacles (criteria that always involve the parameters J and

S that we use here). In all these parameterizations, the linear

values are always upper bounds of the drag. Interestingly,

linear theories are also used to predict these bounds, essentially

via their prediction of the separation points (Smith 1989; Lott

and Miller 1997; Ambaum and Marshall 2005). In this context,

the present article enforces the point that linear theories can be

used to predict nonlinear fields, since here a linear theory with

nonlinear boundary condition accurately reproduce the shel-

tering and the blocking occurring in the more nonlinear cases.

Also, and this is maybe a significant point, it is worth recalling that

with increasing horizontal resolution, the height of subgrid-scale

mountains decreases so they are more and more located within

the boundary layer, maybe rendering our linear dissipative for-

malism more and more adapted.

A second limit is that our calculations use eddy diffusivities

that are constant whereas in reality they strongly depend on

altitude and decrease near the surface [this is evident in the

mixing length model; see (29)]. This decrease in diffusivity also

makes that the background flow tends to have logarithmic

profiles on u0 and r0 near the surface. With these profiles the

background Richardson number is null at the surface, a sit-

uation that does not produce strong critical-level absorptions

in the inviscid limit. Accordingly, all our results overstate the

absorption of the waves when they return to the surface. The

logarithmic profiles also introduce background flow curva-

tures that play a central role in Belcher and Wood (1996),

since they define the midlayer height at which the flow pa-

rameters should be evaluated to calculate the drag and the

transition between the neutral and stratified case [see dis-

cussion of Eq. (1) in section 1]. These curvatures also po-

tentially yield resonant mode that can develop in trapped lee

waves (Lott 2007, 2016). These aspects will be developed in

subsequent papers.
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