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Abstract
A theory for flow over gentle hills using a mixing-length turbulence closure is
developed to describe the transition from turbulent orographic form drag to grav-
ity wave drag. It confirms that the first is associated with downstream sheltering,
and the second with upstream blocking and strong downslope winds. It shows
that the altitude at which the incident flow needs to be taken to calculate the drag
is the inner layer scale at which dissipation equilibrates disturbance advection.
It also shows that the parameter that controls the transition, here a Richard-
son number, compares the mountain length with the altitude of the turning
points above which the upward-propagating gravity waves become evanescent.
Our solutions are also used to show that the downslope winds penetrate well
into the inner layer and that a good fraction of the drag is deposited in the inner
layer: all of it in the neutral case, a large fraction in the intermediate cases when
there are trapped lee waves, and even in stable situations without trapping part
of the gravity wave drag is eroded in the inner layer. Some discussion on how
to combine neutral and stratified effects in the parametrization of subgrid scale
orography in large-scale models is given.
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1 INTRODUCTION

Topographies with small horizontal scale L are assumed to
produce disturbances with amplitude exponentially decay-
ing in the free atmosphere (evanescent waves), hence
essentially affecting the boundary layer. The modification
of turbulent dissipation (and induced stress) results in
mountain drag forces that can substantially increase the
turbulent drag (Hunt et al., 1988a). In this case, the drag
is related to downstream “non-separated” sheltering with
the pressure loss across the hill being caused by frictional
retardation of the flow near the surface when the slopes are

sufficiently small or by flow separation on the downstream
side when the slopes are large—see, for instance, the
large-eddy simulations in Allen and Brown (2002) and
Reinert et al. (2007). A pretty illustration of such down-
stream separation and the associated circulations is the
formation of banner clouds, which sometimes appear in
the right conditions (Voigt & Wirth, 2013). For mountains
with bigger horizontal length scale and in the presence of
stratification, buoyancy force can act against downstream
sheltering, forcing an intense flow along the downstream
flank of the hill. The mechanism at work in this case is
related to buoyancy/gravity waves and is efficient for two
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reasons. The first reason is that in the presence of inter-
nal waves the disturbance amplitudes no longer decay
exponentially with altitude in the free atmosphere, which
means that the dynamics is no longer limited to the bound-
ary layer. The second reason is that, close to the surface,
the horizontal and vertical winds have opposite phase;
that is, large horizontal wind occurs when the vertical
velocity is negative, which is the fundamental mecha-
nism causing downslope winds—see more details in the
review by Durran (1990). Still in these conditions, the wind
also becomes weak upstream, causing upstream block-
ing for large mountains—some recent observations and
large-eddy simulations are found in Pokharel et al. (2017)
and Sauer et al. (2016). In these stratified cases, the drag is
caused by mountain waves for low hills and blocked flow
drag for mountains of sufficient height.

Although these contrasting dynamics can be studied
in great detail using high-resolution models (Finnigan
et al., 2020), the transition between the two regimes has
not received much attention. To our knowledge, only
a few articles address this transition explicitly. Belcher
and Wood (1996) analyse theoretically the transition from
form drag to wave drag, the form drag being related to
non-separated sheltering gradually being replaced by wave
drag when stratification increases. The transition has also
been analysed in wind-tunnel experiments and numeri-
cal simulations by Ross et al. (2004) or in the prediction
of where flow separation is likely to occur (Ambaum &
Marshall, 2005). The fact that the transition itself is not
much studied does not mean that the interplay between
boundary layers and mountain waves has never been
analysed. Numerous articles analyse the impact of the
boundary layer on mountain waves (Richard et al., 1989;
Smith et al., 2006) or on the trapped waves developing
at a boundary-layer inversion (Sachsperger et al., 2015;
Teixeira et al., 2013a). The fact that some wave drag in
the boundary layer can be significant was also recognized
by Tsiringakis et al. (2017) and earlier by Chimonas and
Nappo (1989). Beyond the drag itself, the contribution of
boundary-layer waves to turbulent exchange is also rec-
ognized in oceanography and for sediment suspension
(Boegman & Stastna, 2019; Soontiens et al., 2015).

The purpose of this study is to revisit early theories
about the interactions between mountain and bound-
ary layer in the neutral and stratified case. For this
purpose we return to theories dating back from the
1980–1990s (Belcher & Wood, 1996; Hunt et al., 1988a;
Hunt et al., 1988b) and complement them by deriv-
ing uniform approximations that capture smoothly the
transitions between the so-called “inner” and “outer”
regions. As we will see, the solutions we obtain capture
all together the rich quasi-“inviscid” dynamics associ-
ated with the conventional mountain wave theory (which

includes trapped lee waves) and its explicit interaction
with the boundary-layer dynamics (for instance, the extent
to which downslope winds penetrate into the inner layer).
Our study also has a more practical motivation: there are
two families of subgrid-scale orography parametrizations
in present-day weather forecast and climate models. A
first family represents the enhancement of turbulent drag
by orography (Wood & Mason, 1993), with parametriza-
tions that are today improved to represent better nonlinear
effects and the vertical distribution of the drag (Beljaars
et al., 2004; Wood et al., 2001). A second family represents a
dynamics controlled by gravity waves (Palmer et al., 1986)
and that has also been extended to include nonlinear
effects (Lott & Miller, 1997). It is generally assumed
that the first type of parametrization, also called “turbu-
lent orographic form drag”, should act for mountains of
scale L < 5 km typically, whereas the second type, also
called “subgrid-scale orography” (SSO) should consider
large-scale mountains (Beljaars et al., 2004). With increas-
ing model resolution it could be argued that only the
turbulent orographic form drag parametrizations should
stay in the future, the gravity wave part being explicitly
resolved, but we are probably still far from this status.
A first reason is that the effective resolution of weather
forecast models can be near an order of magnitude coarser
than the model grid size (Vosper et al., 2016). A second
reason is that the L = 5 km cut-off is quite arbitrary and
should be determined according to the local condition
before removing the SSO-type schemes. A third reason is
that even if a model can potentially resolve the small-scale
gravity waves, they will certainly interact with some form
of turbulent parametrization; understanding theoretically
the interaction remains important.

In a recent series of papers, Lott and co-workers (Lott
et al., 2020a; Lott et al., 2020b; Soufflet et al., 2022) for-
mulated such theory and presented uniform solutions in
the constant eddy-viscosity case for small slopes S. They
show that the disturbance amplitude is near that predicted
using inviscid theory if one takes for incident wind its value
at altitude near the inner layer scale 𝛿 where dissipative
effects equilibrate disturbance advection:

U0(𝛿)
L

≈ 𝜈
′(𝛿)
𝛿2 , (1)

U0 and 𝜈
′ respectively being the incident wind and the

eddy diffusivity acting on the disturbance. Lott et al.
(2020b) then describe the transition from neutral to strati-
fied and show that the transition occurs when the Richard-
son number J ≈ 1 (see Section 2.1). To interpret this result
they estimated in their eq. (33) the turning point altitude
where the Scorer parameter satisfies

Sc(ht) =
N(ht)2

U(ht)2
−

Uzz(ht)
U(ht)

= 1∕L2
, (2)
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LOTT et al. 3

where ht is the altitude above which the disturbance with
wave number 1∕L becomes evanescent in the vertical
direction. In Lott et al. (2020b), the turning level was found
to be approximately at ht ≈

√
J L. With J < 1 (J > 1) the

turning level is close to (far from) the surface compared
with the mountain length, and we argued that the grav-
ity waves have not (have) enough vertical space to develop
and the dynamics is neutral (stratified). When the wind
is sheared in the boundary layer and becomes constant
above, Soufflet et al. (2022) found that the Richardson
number in the boundary layer, but above the inner layer,
is still the appropriate parameter to estimate the nature
of the dynamics. In all cases we found that the transition
from neutral to stratified is also a transition from down-
stream sheltering to upstream blocking when the height
of the mountain approaches the inner layer scale (Lott
et al., 2020b; Soufflet et al., 2022). Soufflet et al. (2022) also
revealed the significance of the trapped lee waves during
the transition (when J ≈ 1) and the redistribution of the
pressure drag in terms of vertical and horizontal pseudo
momentum flux.

Since the constant-viscosity model is too simple to rep-
resent the real eddy diffusivity, particularly its decay when
approaching the surface, the purpose of this article is to
extend the formalism in Lott et al. (2020a), Lott et al.
(2020b), and Soufflet et al. (2022) by using a first-order
mixing-length closure reminiscent of the one used in
Belcher and Wood (1996).

The plan of the article is as follows. In Section 2 we
recall the basic equations and give an outline of the the-
ory used in comparison with the theories used in the
past. In Section 3 we describe the transition from down-
stream sheltering to upstream blocking and describe the
trapped waves that develop strongly during the transi-
tion. In Section 4 we present diagnostics of mountain drag
and Reynolds stresses profiles. In Section 5 we summarize
and discuss the significance of our results in the con-
text of subgrid-scale orography parametrization. We also
relate them to the results in Belcher and Wood (1996).
The model is detailed in the Appendix; it combines
asymptotic developments and numerical integrations of
the inner layer equations using a curved coordinate
formalism.

2 BASIC EQUATIONS

2.1 Boussinesq equations and mixing
length

All our calculations use the Boussinesq approximation
written in hybrid terrain following coordinates (X ,Z),

which are related to the Cartesian coordinates (x, z) via

x = X , z = Z + h(X)f (Z) = Z + z′, (3)

where h(x) is the mountain height and the function f (Z) is
positive. f (Z) ensures the transition from terrain-following
coordinates near the surface to Cartesian coordinates by
taking f (0) = 1 and decaying towards zero for Z → ∞.
From Clark (1977), it can be shown that the stationary
Boussinesq equations can be written as follows:

𝜌(u𝜕X u +W𝜕Zu) = −(𝜕X𝜌p + 𝜕Z𝜌g12p) + 𝜕Z𝜏XZ, (4a)

𝜌(u𝜕X w +W𝜕Zw) = −𝜕Zp + 𝜌b + 𝜕Z𝜏XZ, (4b)

𝜌(u𝜕X b +W𝜕Zb) = 𝜕ZqZ, (4c)

𝜕X𝜌u + 𝜕Z𝜌W = 0, (4d)

where the “pseudo” density 𝜌 is the Jacobian of the coor-
dinate transformation, 𝜌g12 is a metric tensor coefficient,
and W a velocity in the direction perpendicular to the
Z =constant surfaces:

𝜌 = 𝜕Zz, 𝜌g12 = −𝜕X z, W = u𝜕xZ + w𝜕zZ, (5)

where u and w are the horizontal and vertical velocities.
Compared with Clark (1977), we have rather followed the
common practice to neglect the stresses and heat flux in
the horizontal direction (𝜏XX , 𝜏ZX , and qX ), which is consis-
tent with the mixing-length model we will adopt. Finally,
in Equations 4a–4d we have divided pressure anomaly by
a constant reference density 𝜌s—(p − ps(z))∕𝜌R → p—and
the buoyancy b = −g(𝜃 − 𝜃s)∕𝜃s, where 𝜃 is potential tem-
perature and 𝜃s a reference value.

In general, we will assume no slip and no flow bound-
ary conditions at the surface:

u(Z = 0) = W(Z = 0) = b(Z = 0) = 0. (6)

To express the stress tensors, we use a closure for eddy
diffusivity based on mixing length theory:

𝜏XZ = 𝜈𝜕Zu, 𝜏ZZ = 𝜈𝜕Zw, qZ = 𝜈𝜕Zb,

with 𝜈 = Λ2
0
‖‖‖‖
𝜕u
𝜕Z

‖‖‖‖
,

(7)

where Λ0 is the mixing length. Standard atmospheric
boundary-layer models for neutral flow often have a
smooth transition from the linear increase of mixing
length near the surface to a constant limit value 𝜆 far away
from the surface; for instance, according to the so-called
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4 LOTT et al.

Blackadar formulation:

1
Λ0

= 1
𝜅(Z + z0)

+ 1
𝜆

, (8)

where 𝜅 is the von Karman constant and z0 a roughness
length. As 𝜆 limits the mixing above the surface layer
it could vary with stratification, a constraint we did not
include explicitly. Note, nevertheless, that our calculations
will cover a large range of 𝜆, with more stable cases being
related to smaller values of this parameter. A difficulty
with the mixing-length profile in Equation (8) is that the
background flows that give uniform fluxes have a logarith-
mic contribution that extends up to z = ∞—see Belcher
and Wood (1996). As log-layers are confined to the near
surface and to simplify the theory, we slightly modify the
formula for the mixing length in Equation (8) and take

Λ0 = 𝜆 tanh
(
𝜅

Z + z0

𝜆

)
. (9)

This approximation keeps Λ ≈ 𝜅Z near the surface and
Λ ≈ 𝜆 in the far field. With this expression, the horizontal
wind and buoyancy profiles that give uniform fluxes are

UV(Z) =
u∗
𝜅

log
[

sinh 𝜅(Z + z0)∕𝜆
sinh 𝜅z0∕𝜆

]
,

BV(Z) =
b∗
𝜅

log
[

sinh 𝜅(Z + z0)∕𝜆
sinh 𝜅z0∕𝜆

]
,

(10)

where the subscript V denotes the background “viscous”
solutions, u∗ =

√
𝜏s∕𝜌R is the friction velocity, and b∗ =

gHs∕(𝜌scpu∗𝜃s) is the buoyancy scale, with 𝜏s and Hs for
surface stress and heat flux and cp for the air heat capacity
per unit mass at constant pressure.

Another difficulty when one tries to analyse the inter-
action between mountain waves and a dissipative surface
layer is that the velocity in Equation (10) keeps increas-
ing with altitude, which is not realistic. The vertical pro-
files also tend to confine vertically propagating gravity
waves to low altitudes. This can spuriously limit the con-
tribution of the gravity waves to the Reynolds stress for
instance. To circumvent this issue, we will consider cases
where the wind profile is modified to become constant
above a height d:

U0(Z) =
u∗d
𝜆

tanh
[
𝜆

u∗d
UV(Z)

]
,

B0(Z) = BV(z).
(11)

This introduces a boundary-layer depth d above which the
background flow is externally imposed rather than being
an exact solution of the viscous equations. Note that the
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F I G U R E 1 (a, b) Background winds used and their various
fits according to layer properties (see legend) 𝜆 = 20 m, z0 = 1 m,
L = 1 km, d = 1 km, u∗ = 0.2 m⋅s−1. (c) Schematic of the model
used. The three thin black solid lines follow the surfaces
Z = 0.5, 1, 1.5. In (b) and (c) the thick black almost horizontal lines
span the inner layer scales corresponding to the dominant
harmonics excited by a Gaussian mountain ridge of horizontal scale
L. In (c) the vertical lines indicate the location and depth of the
turning layer spanned by the turning levels according to
Equation (2): cases with d = ∞ (d = L) are in blue (red). The central
crosses are for the dominant wave number k = 1∕L.

case with infinite winds in the far field, Equation (10), can
be obtained with Equation (11) by taking d = ∞.

As an illustrative example, Figure 1 shows the back-
ground wind profiles for d = 1 km and d = ∞ in a con-
figuration that is characteristic for the cases we will anal-
yse. For mountainous areas, typical values for rough-
ness length, the limit value of the mixing length, friction
velocity, boundary-layer depth, and the mountain length
scale are

z0 = 1 m, 𝜆 = 20 m,u∗ = 0.2 m ⋅ s−1
,

d = 1 km,L = 1 km. (12)

The choice for z0 corresponds to that often made over
chaotic surfaces (Wieringa, 1992), whereas that for 𝜆 is
consistent with observations (Sun, 2011). In Figure 1a
one sees that when d = ∞, U0 has constant shear
over almost the entire domain, whereas when d = 1 km,
the constant shear zone is limited to the boundary
layer where z < d. Henceforth, we will call cases using
d = ∞ “constant-shear” cases and cases using d ≠∞
“variable-shear” cases. Note that to analyse cases where
all harmonics propagate aloft, we will also consider hydro-
static solutions when d ≠ ∞.

The zoom near the surface in Figure 1b shows that,
when approaching the surface, the background wind tran-
sitions from a linear profile to a log-profile around z = 𝜆.
We will call the logarithmic domain of the profile the
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LOTT et al. 5

surface layer. Figure 1a,b also shows the linear asymptote
of U0 when 𝜆 ≪ z ≪ d, illustrating that

U0(z) ≈
⏟⏟⏟

𝜆≪z≪d

u∗(z + za)
𝜆

, B0(z) ≈
⏟⏟⏟

𝜆≪z

b∗(z + za)
𝜆

, (13)

where the parameter

za = z0 −
𝜆

𝜅

log
(

2 sinh 𝜅z0

𝜆

)
(14)

measures the depth of the “critical level”: at z = −za all dis-
turbances have null intrinsic phase speed. At least in the
boundary layer and above the surface layer, these asymp-
totes match U0 and B0 quite well. An important measure
of the flow stability is the background flow Richardson
number:

Ri(z) =
B0z

U2
0z
. (15)

From the flow profiles in Equation (11), it is clear that Ri(z)
is zero near the surface, constant and equal to parameter J
in the shear zone, and infinite when z ≫ d. Parameter J is
defined as

J = Ri(𝜆 ≪ z ≪ d) = 𝜆b∗u∗
u3
∗
= 𝜆

𝜅Lmo
, (16)

where Lmo is the Obukhov length. Though in principle
the characteristic length 𝜆 should be related to Lmo, we
have chosen to keep them separated in order to disentangle
the dynamical impact of J through the inviscid dynam-
ics and of the turbulence (and hence 𝜆 or z0) through the
near-surface dissipation. In the remaining part of this arti-
cle, in the interest of brevity J will be called the Richardson
number and will be used to control the stability regime.

2.2 Inner scales and turning points

According to many articles about turbulent flows over gen-
tle hills, it is often necessary to separate in the analysis
three different layers separated by the inner layer scale and
the turning level defined in Equations 1 and 2 respectively
(Belcher & Wood, 1996). If we replace L by the horizontal
wave number k−1 and take for the eddy diffusivity acting
on disturbances 𝜈′ = 2Λu∗, Equation (1) becomes

kU0(𝛿) ≈
2Λ(𝛿)u∗
𝛿2 . (17)

We have verified that it is very well approximated by

𝛿(k) =
(
𝜆

2

k

)1∕3

, (18)

an expression that facilitates the asymptotic development
as a function of the small parameter 𝜆∕L presented in the

Appendix. The turning points are often located above the
inner layer scale, at a height ht defined by Equation (2),
again replacing L by k−1. Their presence quantifies wave
trapping, whereas the parameter J quantifies the depth
over which trapping occurs. To illustrate these points, here
and in the rest of the article we will consider Gaussian
ridges with characteristic horizontal scale L:

h(x) = H e−x2∕2L2
, (19)

where H is the maximum mountain height. For such a pro-
file, a large fraction of the excited harmonics have wave
numbers that span the interval 21∕2∕L < k < 2−1∕2∕L. The
corresponding interval in 𝛿 is shown in Figure 1b, illus-
trating that the inner layer scales satisfy 𝜆 < 𝛿(k) < d. In
Figure 1c, this band of inner layer scales is also shown
following the mountain profiles.

Figure 1c shows the vertical space spanned by the turn-
ing points ht, and for the cases with d = ∞ (blue) and d = L
(red) after implicit resolution of Equation (2) and replac-
ing 1∕L by 21∕2∕L < k < 2−1∕2∕L again. As in Lott et al.
(2020b), one sees that in the constant-shear case (d = ∞,
blue vertical lines) the parameter J controls the altitude of
the turning levels: when J < 1 (J > 1) the turning layer is
predominantly below (above) L = 1 km and we can expect
a neutral (stratified) behaviour. Note also that using the
linear–log profiles for UV and BV derived from the more
classical Blackadar formula, Equation (8), the aforemen-
tioned diagnostics of inner layer and turning points do not
differ much quantitatively.

In the variable-shear case with d = L (red vertical
lines), the turning points’ altitude also increases with J
but is located significantly higher than when d = ∞. Fur-
thermore, when J approaches 1 and becomes larger, there
are not many waves trapped (there is almost no turning
level for J = 2). In these cases with fixed d = L, the frac-
tion of propagating versus trapped waves is measured by
comparing the Scorer parameter in the far field with 1∕L2,

Sc(∞) ≷ 1∕L2 ⟺ F = N(∞)L
U(∞)

=
√

J L
d
≷ 1,

where we have used the buoyancy profile in Equation (10)
and the wind profile in Equation (11). F is a conventional
Froude number, controlling the amount of drag that can
be transported by gravity waves in the far field (Teixeira
et al., 2013b). It is very likely that it impacts the sur-
face drag, an effect that we will only measure indirectly
here and by comparing the cases Fr =

√
J with cases with

Fr = 0 (constant shear) and Fr = ∞ (hydrostatic). In other
words, when d = L we have to keep in mind that J controls
both the depth of the trapping region and the signifi-
cance of trapping. In this article we emphasize the first
aspect and leave to a subsequent article a more systematic
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6 LOTT et al.

analysis where both the depth of the trapping region and
the amount of trapping change separately.

2.3 Non-dimensional formulation

To integrate our equations using boundary-layer tech-
niques we start by deriving a non-dimensional form of
Equations 4a–4d using the scalings

(X ,Z) = L
(

X ,Z
)
,

(U0,u,w,W) = u∗L
𝜆

(U,u,w,W),

p = u2
∗

L2

𝜆2 p,

(B0, b) = u2
∗

L
𝜆2 (B, b).

(20)

All the length scales characterizing the boundary-layer
depth and turbulent mixing become

d = Ld, 𝛿 = L𝛿, ht = Lht,

𝜆 = L𝜆, z0 = Lz0, Λ0 = 𝜆Λ.
(21)

According to Equation (9), the last scaling makes Λ(z) ≈
O(1), which permits one to write Equations 4a–4d as

𝜌

(
u𝜕X u +W𝜕Zu

)
= −

(
𝜕X𝜌p + 𝜕Z𝜌g12p

)

+ 𝜆
2
𝜕Z

(
Λ

2
||𝜕Zu||𝜕Zu

)
, (22a)

𝜌

(
u𝜕X w +W𝜕Zw

)

= −𝜕Zp + 𝜌b + 𝜆
2
𝜕Z

(
Λ

2
||𝜕Zu||𝜕Zw

)
, (22b)

𝜌

(
u𝜕X b +W𝜕Zb

)
= 𝜆

2
𝜕Z

(
Λ

2
||𝜕Zu||𝜕Zb

)
, (22c)

𝜕X𝜌u + 𝜕Z𝜌W = 0 (22d)

and makes explicit that the small parameter controlling
the inner layer dynamics is 𝜆

2
. Still in non-dimensional

form, the coordinate transform in Equation (3) writes

x = X , z = Z + h(X)f (Z) = Z + z′. (23)

The following choice is made for the low hill and the
vertical scaling function:

h(x) = S e−x2∕2 and f (Z) = exp
(
− Z

3
∕3

)
, (24)

where S = H∕L is the mountain slope. In Equation (24),
the definition of f (Z) is such that, at the surface, f (0) = 1,

ḟ (0) = 0, and f̈ (0) = 0, properties that permit one to sim-
plify the formalism in the inner layer.

2.4 Linear analysis

If we consider hills of small slope S, we can assume that
the response to the forcing terms is linear and consider
solutions of the form

u = U + u′, w = w′;W = W
′
, p = P + p′,

b = B + b
′
, z = Z + z′, 𝜌 = 1 + 𝜌′

(25)

with normalized backgrounds

U(Z) = d tanh

{
𝜆

𝜅d
log

[
sinh 𝜅(Z + z0)∕𝜆

sinh 𝜅z0∕𝜆

]}

, (26a)

BZ = J coth[𝜅(Z + z0)∕𝜆], (26b)

Λ(Z) = tanh[𝜅(Z + z0)∕𝜆]. (26c)

We then search solutions in the form of Fourier trans-
forms:

u′(X ,Z) =
∫

+∞

−∞
u(k,Z) eik X dk. (27)

Denoting 𝝆 and z the Fourier transforms of 𝜌′ and z′

defined in Equation (25), Equations 22a–22d linearize to

ik U u + UZW + ik p − 𝜆
2
𝜕Z2Λ𝜕Zu = ikBz (28a)

ik U W + 𝜕Zp − b − 𝜆
2
𝜕ZΛ𝜕Zw = 𝝆 B + k

2
U

2
z, (28b)

ik U b + BZW − 𝜆2
𝜕Z

(
Λ𝜕Zb + JΛ𝜕Zu

)
= 0, (28c)

ik u + 𝜕ZW = −ik U 𝝆, (28d)

where
W −w = −ik U z. (28e)

The no-slip boundary condition become

u(0) = W(0) = b(0) = 0. (29)

2.5 Rationale of the theoretical model
and relation with earlier studies

As expected with terrain-following coordinates,
Equations 28a–28d contain forcing terms associated with
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LOTT et al. 7

the metric, all of which are placed at the right-hand
side. In Appendix A.1 we compute the solutions of the
homogeneous Equations 28a–28d, and in Appendix A.2
we compute a particular solution that equilibrates these
forcings. Both solutions are used to formulate a complete
solution that matches the boundary conditions. For both
the homogeneous solution and the particular solution we
separate the domain of integration between an “inner lay-
er” and an “outer layer”, separated by a matching region
where we derive asymptotic solutions that are valid in the
lower part of the outer layer and upper part of the inner
layer. The homogeneous and particular solutions have
exact analytical solutions in both the outer and matching
regions, the solutions in the inner layer being evalu-
ated numerically starting from solutions in the matching
region. Importantly, the numerical integration starts from
near 5𝛿 down to the surface, a numerical choice that is
consistent with conventional viscous boundary-layer the-
ory where the inner layer depth, above which dissipation
has less than 1% impact at leading order, is around five
times the inner layer scale—see also Lott et al. (2020a),
Lott et al. (2020b), and Soufflet et al. (2022).

To a large extent, Equations 28a–28d and their
inner layer approximation derived in the Appendix (see
Equations A26a–A26d) are similar to those in Belcher and
Wood (1996), and to the basic equations in other arti-
cles using linear theory in curved coordinates (Beljaars
et al., 1987; Weng et al., 1997). In terms of dynamics, there
is, nevertheless, one important difference with Belcher
and Wood (1996): we do not consider explicitly the pres-
ence of an almost inviscid middle layer where the Scorer
parameter, Equation (2), is dominated by the background
wind curvature. The reason is that our numerical integra-
tion starts from around 5𝛿, which corresponds to altitudes
where the background wind curvature is small (in the
“matching region”, the background gradients are almost
constant). To appreciate better the significance of the mid-
dle layer in our case, we have followed Hunt et al. (1988b)
and translated those equations into a non-dimensional
form and calculated the middle layer scale as the highest
altitude hm below which

‖‖‖‖‖‖

UZ Z

U

‖‖‖‖‖‖
≫ 1 and

‖‖‖‖‖‖

UZ Z

U

‖‖‖‖‖‖
≫

BZ

U
2 (30)

and always found that 0 < hm < 2𝛿 with hm ≈ 0 when J
is large and hm ≈ 2𝛿 when J is small (not shown). The
middle layer scale is either near the inner layer scale or
it does not even exist—for cases when hm < 𝛿, see Hunt
et al. (1988b). This is in contrast to the altitude of the
turning levels, which are often well above 𝛿 when J ≠ 0
(see Figure 1c). In other words, our model potentially

presents a large region between the inner scale and the
turning points that can support the vertical propagation of
internal gravity waves; these waves will fully interact with
the turning levels and the inner layer, yielding trapped
lee waves that gradually attenuate downstream. This plus
the intrinsic interest of providing uniform approximations
are the major originalities of our work. Apart from these,
our model is consistent with the truncated mixing-length
model for turbulence adopted in the theory exposed in
Belcher and Wood (1996) because it neglects the impact
of turbulence above the inner layer consistent with the
rapid-distortion mechanism.

3 WAVE FIELD AND TRANSITION
FROM DOWNSTREAM SHELTERING
TO UPSTREAM BLOCKING

3.1 Wave field

To construct the solutions of Equations 27 and 28a–28d,
we consider a very large periodic domain in the horizon-
tal (e.g., −50 < X < 50) sampled by 1024 points, yielding
a spectral resolution dk ≈ 0.06. The resolution in the ver-
tical is refined near the surface when needed; typically,
we set dZ ≈ S∕10 near the surface (actually more for plot-
ting purposes rather than for precision). Indeed, the solu-
tions derived in the Appendix are analytical in the outer
and matching regions (see Equations A5–A13–A16 for the
homogeneous solution and Equations A24 and A25 for the
particular solution). Hence, when the numerical integra-
tions are carried out in the inner layer (Appendix A.1.3
for the homogeneous solution and Appendix A.2.3 for the
particular solution) we use an adaptive vertical step to
minimize the error. After being evaluated on the curved
grid, the solutions are linearly interpolated on the rectan-
gular grid, the vertical velocity w′ being expressed out of
W
′

according to Equation (28e). In all panels representing
the velocity fields, we take for parameter values those listed
in Equation (12) and slope S = 0.2, their non-dimensional
counterparts being given in the caption of Figure 2. Note
that we will also systematically vary the non-dimensional
turbulent lengths 𝜆 and z0 to test the sensitivity of our
results to these two parameters.

We plot in Figure 2 the vertical velocity field w′ when
the outer flow has variable shear (Figure 2a,d,g), con-
stant shear (Figure 2b,e,h), and variable shear with the
hydrostatic approximation (Figure 2c,f,i). In each case, we
present results for increasing values of the Richardson
number (from top to bottom). In Figure 2a,d,g, harmon-
ics with wave number k >

√
J encounter a turning height

above which they are evanescent (see Equations A5 and
A6 when d = 1). In Figure 2b,e,h, all harmonics encounter
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8 LOTT et al.

x

z
z

z

x x

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F I G U R E 2 Non-dimensional
vertical velocity field w′ for a mountain
of slope S = 0.2, and boundary-layer
flow with mixing length 𝜆 = 0.02
(corresponding inner layer 𝛿 ≈ 0.07)
and roughness length z0 = 0.001 (depth
of the critical layer za ≈ 0.16). The
boundary-layer depth d = 1 except in
(b), (e), and (h), where d = ∞. Contour
interval is 0.01, with negative values
dashed. Note that all these patterns have
been validated with the nonlinear model
used in Lott et al. (2020b) (not shown).

a turning height. In Figure 2c,f,i, there is no turning point:
all harmonics propagate upward when z → ∞.

A first interesting aspect to notice is that the typical
amplitude of the vertical velocity right on the windward
side of the hill is near U(𝛿∕2)S ≈ 0.04, which is the ampli-
tude of the vertical velocity produced when an inviscid
flow of speed U(𝛿∕2) passes over a ridge of slope S (note
that the contour interval in each panel stays the same at
0.01). This situation is very similar to the constant-viscosity
case discussed in Lott et al. (2020a), where dissipative
effects force streamlines, up to Z = 𝛿∕2, to be displaced
vertically over a distance S, such that at Z = 𝛿∕2 the verti-
cal velocity should scale as U(𝛿∕2)S.

If we now look for similarities with previous
constant-viscosity studies, we conclude that the solu-
tions with variable wind in Figure 2a,d,g are similar to
those shown in Soufflet et al. (2022). In the near-neutral
case (Figure 2a) almost no waves develop aloft because
most harmonics encounter a turning height and perhaps
because the resonant modes have longer horizon-
tal wavelength than those predominantly excited by
Equation (19)—as in Soufflet et al. (2022) and anticipating
results in a subsequent article. In contrast, when J = 0.5 in
Figure 2d, trapped waves dominate the response, because
many harmonics still encounter turning altitudes, whereas
near-resonant modes have shorter horizontal wavelength.
The response becomes dominated by upward propagating
waves when J = 2 in Figure 2g. This occurs because less
harmonics encounter turning height, but there is also a
system of trapped lee waves developing downstream.

The solutions with constant shear in Figure 2b,e,h
are characterized by very weak waves up to J = 0.5

(Figure 2b,e), which is a consequence of the facts that
(i) all harmonics encounter turning heights in the ver-
tical, (ii) the turning heights are located near the sur-
face (around ht ≈

√
J), and (iii) upward waves cannot

fully develop. When J increases further in Figure 2h,
trapped lee waves start to develop. They have two ori-
gins, the first is that in this case the gravity waves have
more room to propagate vertically before returning to
the surface downstream (see Lott et al., 2020b), and the
second is that the waves returning to the surface are
less absorbed than in the constant-viscosity case, permit-
ting downward propagation. A more complete analysis
of the trapped waves will be given in a subsequent arti-
cle, but the onset of trapped waves when the wind shear
becomes constant is reminiscent of the inviscid solutions
with constant wind shear and non-zero wind at the surface
in Keller (1994).

The hydrostatic solutions in Figure 2c,f,i present
purely vertically propagating waves, as expected from
Equation (A7), the vertical wavelength decreasing with J.

3.2 Downstream sheltering versus
upstream blocking

To characterize the near-surface flow, we plot in Figure 3
the wind perturbation caused by the hill, normalized
by the incident wind and the total wind vector (back-
ground plus perturbation) in the quasi-neutral and strat-
ified cases shown in Figure 2a,g. The neutral case in
Figure 3a shows a relative augmentation in wind ampli-
tude above the hill top compared with the upstream
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LOTT et al. 9

F I G U R E 3 Near-mountain
velocity fields with the same parameters
as in Figure 2b,h. (a, c) The total wind
amplitude normalized by the
background wind,

√
u2 + w2∕U(Z). The

contour interval is 0.1 with values below
zero dashed. (b, d) The total wind vector
u,w.

x

z
z

x

(a) (b)

(c) (d)

flank, and an intensification above the hill crest that
is characteristic of neutral flow over hills. Still in the
near-neutral case, the wind amplitude along the down-
stream flank is also reduced compared with the upstream
flank, a behaviour characterizing non-separated sheltering
and produced by enhanced surface friction and dissipa-
tion as the air travels across the ridge. Note, nevertheless,
that the sheltering effect is much less pronounced than in
the constant-viscosity case, a behaviour that naturally fol-
lows from the decrease of the diffusion coefficient when
approaching the surface—compare Figure 3b here and
Lott et al. (2020b, fig. 6b).

In the stratified case in Figure 3c,d, the upslope/-
downslope asymmetry is much more pronounced: there is
strong wind intensification on the downstream side, with
strong downslope winds penetrating well into the inner
layer. On the upstream side there is also pronounced decel-
eration, a process that we called non-separated blocking in
Lott et al. (2020b).

We analyse more systematically the transition from
neutral to stratified flow according to the downslope/up-
slope asymmetry—that is, following Soufflet et al.
(2022)—in Figure 4. We plot the ratio between the
downslope wind intensity and upslope wind intensity,

Max
⏟⏟⏟

z< 2S
3
,0<x<2

√
u2 + w2

/
Max
⏟⏟⏟

z< 2S
3
,−2<x<0

√
u2 + w2

, (31)

as a function of the Richardson number J. We also system-
atically vary the value of the mixing length 𝜆 between 0.005
and 0.05, a range of variation that permits one to satisfy
𝛿 ≪ 1 and to keep the dimensional values of 𝜆 of the order

0.1 1
Richardson number J

0

1

2

3
D

ow
ns

lo
pe

/u
ps

lo
pe

 a
sy

m
m

et
ry

λ = 0.005, z
0

= λ/40
λ = 0.005, z

0
= λ/20

λ = 0.005, z
0

= λ/10
λ = 0.01,    "      "

λ = 0.02,     "     "

λ = 0.035,    "     "

λ = 0.05,      "     "

λ = 0.005, z
0

= λ/5
λ = 0.005, z

0
= λ/2

λ=0.02, z0=0.001 

F I G U R E 4 Downslope sheltering versus upstream blocking
index defined as the ratio between the maximum downslope wind
amplitude and the maximum upslope wind amplitude; see
Equation (31). Non-hydrostatic cases with variable shears, S = 0.2,
and for values of 𝜆 and z0 shown in the legend.

of 20 m and below when the the dimensional hill length
varies in the range 200 m < L < 5 km. In order to be con-
sistent with our asymptotic analysis, we have to keep the
roughness length 𝜆∕2 < z0 < 𝜆∕40, and to keep za = O(𝛿),
za being controlled by the ratio z0∕𝜆; see Equation (14).
Physically, this means that our calculations are only valid
if the depth of the critical level za compares with the inner
layer scale. In practice, we found that we should always sat-
isfy the criterion 5𝛿 − za > 0 to have inner solutions that
converge.

For almost all values of the dissipation parameters,
Figure 4 shows that the transition from neutral to strat-
ified behaviour occurs for J ≈ 0.5, almost as in Soufflet
et al. (2022, fig. 7b). The sheltering is nevertheless less pro-
nounced, the ratio in Equation (31) falling below 0.5 in
the constant-viscosity case when J ≪ 1 and for S = 0.15,
whereas it is always between 0.5 and 1 for a larger slope
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10 LOTT et al.
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(a) Surface pressure drag
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Richardson number J
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(b) Wave stress/(surface press. drag)

λ  = 0.02
zo = 0.001

F I G U R E 5 Mountain drag and wave
momentum flux divided by S2 in the
non-hydrostatic variable-shear case and for
different values of 𝜆 and z0. (a) Mountain drag
𝜏wav(Z = 0). (b) Ratio between wave stress in
the far field and at the mountain drag,
𝜏wav(Z = ∞)∕𝜏wav(Z = 0).

(S = 0.2). Again, this is related to the fact that, here, dissi-
pative effects are smaller near the surface when compared
with the constant-viscosity case.

4 WAVES STRESS AND
MOUNTAIN DRAG

4.1 Pressure drag and momentum
fluxes

To appreciate the action of the wave on the large-scale
flow, we next use a momentum budget in curved coor-
dinates by averaging in X Equation (22a) written in
flux form,

𝜕𝜌u
𝜕t

= 𝜕

𝜕Z

⎛
⎜
⎜
⎜
⎜
⎝

−𝜌u W + p𝜕X z
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝜏wav

+ 𝜏X Z

⎞
⎟
⎟
⎟
⎟
⎠

, (32)

where we have “re-”introduced a “large-scale” tendency
on the left-hand side to emphasize that we will use the
stationary linear model to analyse the effect of the distur-
bances on the large-scale flow. This expression is appealing
because the first two terms in the momentum flux on the
right-hand side permit one to capture smoothly the tran-
sition from mountain drag at Z = 0 to the conventional
“Eulerian mean” wave momentum flux when Z ≫ 1 (e.g.,
where Z = z). To a certain extent this expression also has
a Lagrangian character. In the surface layer, the averaging
is simply along the streamlines that follow the ridge, mak-
ing the average in good part Lagrangian by construction.
Above the inner layer it follows that, when dissipation is
weak, the Reynolds stress alone equals the pressure torque
along streamlines—see Lott et al. (2020a, eq. 23) when dis-
sipation is small. In the following, we analyse the wave
stress 𝜏wav, which is the contribution of our linear solu-
tions to the sum of these two terms, after verification that
the second-order contribution to the dissipative stress 𝜏X Z,

(𝜆Λu′Z)
2, is significantly smaller than the wave stress in the

inner layer.
Figure 5a shows the surface pressure drag as a function

of J in the variable-shear case (d = 1) and for the differ-
ent values of the parameters 𝜆 and z0. The pressure drag
is divided by S2, simply because we diagnose a quadratic
term from a theory that is linear in S. On it, we see that
the curves spread over a very large range of values and that
the drag has a systematic tendency to increase with J. This
is the classical behaviour where gravity wave drag gradu-
ally replaces the form drag due to non-separated sheltering
and when the trapping region becomes thicker (Yu & Teix-
eira, 2015). There is also a tendency for the drag to increase
with 𝜆. As the incident wind at the inner layer scale U(𝛿)
increases with −𝜆 (not shown), this is consistent with our
results in Lott et al. (2020a), where we show that it is the
incident wind at the inner layer scale that controls the drag
amplitude.

The dependence of the drag on z0 is related to flow sta-
bility. In the neutral case, say for J < 0.5, the drag increases
with roughness (“triangles” are above “plus signs”) simply
because there is more dissipation, making the shelter-
ing more pronounced (“triangles” are below “plus signs”
in Figure 4). The situation reverses in the stratified case
(J > 0.5), where the drag decreases when the roughness
length increases. An interpretation could be that when
there is an increase in z0 then za decreases; that is, the crit-
ical level gets closer to the surface, which makes the waves
become more attenuated by the enhancement of the dis-
sipative effects that occur near critical levels (Booker &
Bretherton, 1967). As in these cases the drag is dominated
by wave drag, enhanced wave dissipation could result in
decreased wave drag.

Figure 5b plots the ratio between the wave stress in
the far field and the surface pressure drag. Without a sur-
prise, one sees that for small J, most of the pressure drag is
deposited at low levels (typically about 80%when J ≤ 0.1),
which is a natural consequence of the fact that most har-
monics are evanescent in the vertical and in the far field.
At the other extreme for the stable cases, a good fraction of
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LOTT et al. 11

F I G U R E 6 Mountain drag
divided by S2U(𝛿∕2) and for different
values of 𝜆 and z0. The thick black and
grey lines in (a) and (c) are for the
rough estimates of the variations in
drag with Richardson number
discussed in Section 5 (see Equations 33
and 34 respectively).
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(b) Non-hydro constant shear
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the drag radiates in the far field (about 70% when J > 1),
with only 30% of the surface drag being eroded by dissi-
pation. Finally, the transition region, say for 0.1 < J < 1, is
remarkably rich in terms of variations in this ratio. When
we look at the vertical velocity fields in Figure 2 and com-
pare the case with J = 0.5 in Figure 2e with the other less
stable and more stable cases in Figure 2b,h respectively,
we see that the transition region is clearly dominated by
trapped lee waves that do not contribute substantially to
the momentum flux in the far field. In this intermediate
regime, we also observe a big variability in the momentum
flux arriving in the far field. As an illustration, we see in
Figure 5b that, for J = 0.3, about 20% of the drag becomes
a momentum flux when (𝜆 = 0.005, z0 = 𝜆∕2) (black line
with triangles), whereas it is 80% when (𝜆 = 0.035, z0 =
𝜆∕10) (blue line with diamonds).

Following the earlier suggestion that the incident
velocity relevant for the drag must be measured at the
inner layer scale, Figure 6a shows the pressure drag
divided by U(𝛿∕2)S2, which is an estimate of the wave drag
occurring for an incident flow of speed U(𝛿∕2)S2 when
J = 1. We believe that this predictor could also work for
the drag due to non-separated sheltering because it com-
pares relatively well with 𝛿 u(S)S, a measure of the drag
associated with the pressure decrease across the hill that
equilibrates surface friction (see Lott et al., 2020b). With
this normalization, one sees that the drag values remain
on the order of magnitudes around 1, with smaller val-
ues in the neutral cases and larger values in the stratified
cases. The figure also illustrates well the transition around
J = 1, with larger drag in the stratified case. There is, nev-
ertheless, a rich variability in drag as a function of z0 and 𝜆
when stability is large; we did not manage to capture this
variability with a simple predictor.

To emphasize the significance of the conditions of
wave propagation aloft, we plot in Figure 6b,c the drag
when all the waves are trapped (the non-hydrostatic case
with constant shear) and free to propagate aloft (hydro-
static with variable shear). When all the disturbances are
trapped in Figure 6b, the transition at J ≈ 1 is even more

pronounced than in Figure 6a. In almost all cases, and
when J varies between 0.5 and 1, the drag decreases before
increasing rapidly as J approaches 1. These rapid transi-
tions occur for all values of 𝜆 and z0, as was also seen in
the constant-viscosity case. This variation is related to the
interaction between the reflected waves and the surface
(yielding relatively low and high drag states also see Teix-
eira et al., (2013a). When all the waves can propagate aloft,
we observe the opposite behaviour (Figure 6c, hydrostatic
variable shear). The variations in drag with J are much
less dramatic than in the other two cases. Interestingly,
one sees that for small J the pressure drag is larger than in
Figure 6a,b, illustrating that allowing all the disturbances
to propagate freely as gravity waves in the vertical direction
favours the drag. Of course, this is academic, since only
few disturbances can propagate vertically when J is small
in the non-hydrostatic case, but it illustrates the general
significance of the waves for the mountain drag.

Finally, Figure 7 shows vertical profiles of the waves
stress (𝜏wav in Equation 32) in the nine cases presented in
Figure 2. As expected, we see a decrease with altitude of
the momentum flux, which typically occurs over a depth
near Z ≈ 3𝛿 ≈ 0.2. The fact that such a decrease occurs
inside the inner layer depth 5𝛿 is systematic, but the exact
depth is somehow dependent on the critical level depth
za (and hence z0) (not shown). We see that the momen-
tum flux decrease has two causes: (i) the effect of wave
trapping that always dominates the constant-shear case
(black curves) and (ii) the erosion by dissipation of the
waves when they travel upward through the inner layer
and that is the only mechanism at work in the hydro-
static case (about 15%–20% erosion, see blue curves). In the
non-hydrostatic case with variable shear, one sees that the
two effects contribute almost equally. For instance, in the
stratified case (J = 2), the red and blue dotted curves show
that the decrease of the stress in the inner layer is two to
three times larger in the non-hydrostatic case than in the
hydrostatic one. The contribution of the trapped waves to
the momentum flux decay equals and exceeds the erosion
of the freely propagating waves.
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flux vertical profiles according to
Equation 32 and for the nine
cases in Figure 2. Panels on the
left and right are identical except
the stress profiles in (b) are
divided by the surface value to
emphasize erosion with altitude.

5 SUMMARY AND DISCUSSION

In dynamical meteorology and oceanography,
boundary-layer turbulence is often parametrized with an
eddy diffusivity in order to capture the interaction between
the surface and the boundary layer. Although these types
of closure are today questioned—for instance, because
the smallest scales of turbulence can backscatter on the
large scales (Schumann & Launder, 1995; Weinbrecht &
Mason, 2008), or in mountainous areas because the turbu-
lence is notoriously non-homogeneous in the horizontal
direction (Stiperski & Rotach, 2016)—many numerical
models still use them. It seems essential, therefore, to
provide theory that could help explain the behaviour of
these models; for example, the system of mountain waves
developing in a boundary layer parametrized by a classical
mixing-length closure.

This type of study could also provide some guidance
to develop parametrization of subgrid-scale orography for
at least two reasons. The first is that parametrizations
of subgrid-scale mountains are rooted in linear theories
that depict (i) the interaction between the boundary layer
and subgrid-scale orography using eddy diffusivity clo-
sure, and (ii) the generation of mountain waves in the
stratified case neglecting the boundary layer (except that
the large-scale flow that enters in the evaluation of the
wave drag is impacted by the boundary layer). The second
is that the transition between stratified and neutral flow
can seemingly be characterized by near-resonant trapped
lee waves that are not well parametrized in models. This
article provides some answers to help in developing a
parametrization that encompasses all the scales of the
SSO. The first answer is that it suggests that the incident

wind value at the inner layer scale should be used to
measure the drag (or average over the inner layer; see
normalization in Figure 6). In a large-scale model that uses
a viscosity-type closure, and for a given mountain length,
this height can be diagnosed by comparing the amplitude
of the disturbance advection with dissipation—according
to Equation (1). With our mixing-length model closure this
is well approximated by 𝛿 = L1∕3

𝜆
2∕3, as in Equation (18)

with k = 1∕L. The second answer is that the nature of
the drag (i.e., mountain drag due to non-separated shel-
tering versus gravity wave drag) has to be decided above
the inner layer. This is very important because it can be
done without requesting information about the properties
of the turbulence itself; we just have to find, for a given
mountain length L, the turning point altitude ht, defined
in Equation (2), and compare it with L. If ht < L, gravity
waves do not have enough space to develop in the vertical
and the dynamics is neutral, if ht > L then the dynamics
is stratified. More specifically, in the constant-shear cases
with the turning altitude at around ht ≈

√
JL, small (large)

values of J mean that the turning altitude is close to the sur-
face (far from the surface) and we found neutral (stratified)
behaviour. In the variable-shear case, the turning altitude
is slightly above the surface for small J and substantially
higher (up to the top of the atmosphere) for large J, yield-
ing about the same qualitative conclusions. In contrast to
Belcher and Wood (1996), we find that this turning alti-
tude should not be used to evaluate the incident wind that
enters in the drag formula.

Making closed-form predictions beyond the fact that
the drag scales with

𝜌s

[u∗L
𝜆

U(𝛿∕2)S2
]
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LOTT et al. 13

turned out to be quite difficult, so we did not propose any in
the core of the article. Nevertheless, we can suggest some
attempts to capture at least the J dependence. The first is

[
𝜌s

u∗L
𝜆

U(𝛿∕2)S2
]
0.25 × (1 + 2

√
J), (33)

where the first term in brackets is the dimensional form of
the normalization used in Figure 6, and the second term is
the sum of a form drag and a wave drag, as shown by the
thick black curves in Figure 6a,c. This fit is adapted in the
hydrostatic case when all disturbances becomes waves in
the far field. It overestimates the drag in the neutral case,
where gravity waves should not play a role. So, to separate
both regimes and allow a rapid transition from one to the
other, we also plot in thick grey the predictor

[
𝜌s

u∗L
𝜆

U(𝛿∕2)S2
]
× 0.25

×
{

1 +
[
1 + tanh

(J − 0.5
0.5

)]√
J
}
.

(34)

The tanh term in Equation (34) limits the wave contri-
bution in the neutral case and allows for a quite rapid
transition from the neutral to the stratified cases. The rapid
increase in drag when J ≈ 0.5 is presumably related to
trapped waves.

An important limitation of our work, nevertheless, is
that we have focused on the depth of the trapping region
and less on the relative amount of waves that stay trapped
(i.e., that are evanescent for z → ∞). This relative amount
is controlled by the inverse Froude number

F−1 = U(∞)
N(∞)L

, (35)

which is well known to control the non-hydrostatic effect
on the mountain wave drag (Teixeira et al., 2013b). In the
constant-shear case (F−1 = ∞), all the waves stay trapped;
in the variable-shear case (F−1 = d∕(L

√
J)), the fraction

of trapped waves decreases when J increases because we
always take d∕L = 1; and in the hydrostatic case (F−1 ≈ 0),
all the waves propagate up. Accordingly, it is likely that the
increase in drag with J in Figure 6a is due to the fact that
more waves can propagate up. To illustrate that this effect
is at work in our results, we notice that when J is small
(J ≤ 0.5) the drag is larger in the variable-shear case than
when all the waves are trapped (Figure 6b) and smaller
than when all can propagate up (Figure 6a). In a compan-
ion paper, we do experiments where J only controls the
free shear layer stability, not the amount of trapping; for
instance, leaving F constant by taking d = L

√
J.

We are not going to speculate further on the appli-
cation of our results, except to formulate them in a way
that involves further the background flow at the dynamical

levels we have identified. We can, for example, approxi-
mate the wind factor u∗L∕𝜆 by U(ht) and we can inter-
pret the Richardson number dependence in terms of ht,
the ratio between the turning heights and the mountain
length, in which case the drag predictor, Equation (33), can
be roughly approximated by

𝜌sU(ht)U(𝛿∕2)S2h
2
c
(
1 + ht∕hc

)
, (36)

where ht = ht∕L and hc = 0.5 is a critical value. In all
these formulas one should replace ht by the “normalized”
boundary layer depth d when it is larger. This formula
could be compared with Belcher and Wood (1996), the
slope S being replaced by Hk and ht by the inverse of
a Froude number, F−1

t = U(ht)∕LN(ht). According to the
previous discussion herein concerning the potential role
of the Froude numbers on the dynamics and drag, we
leave this issue to further analysis. In this article, the most
significant difference we identify is that one of the
two background wind values in Equation (36) is to be
taken near the inner layer scale (i.e., in 𝛿∕2) not at
the turning altitude ht. Nevertheless, the most important
similarity is that, in both formulations, the nature of the
dynamics (neutral or stratified) has to be decided at the
turning height.
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APPENDIX A. MIXED THEORETICAL
FINITE-DIFFERENCE MODEL

To solve the set of Equations 28a–28d over a
semi-infinite domain, we combine theoretical inviscid
solutions and numerical solutions in the inner layer, with
the inner layer scale varying for each harmonic according
to

𝛿(k) =

(
𝜆

2

k

)1∕3

. (A1)

The matching between the inviscid or “outer layer” solu-
tion will be made in a matching region in which analytical
asymptotic solutions are also derived. These “match-
ing” solutions will permit one to initialize the dissipative
equations at z ≈ 5𝛿, which is relatively near the ground,
and integrate them down to the surface to give the “in-
ner solutions”. The uniform solutions are combinations
of these three “outer”, “matching”, and “inner” solutions;
they will be evaluated for both the homogeneous solution
and the particular solution. The derivation of the match-
ing solutions is central to our study, because in them one
can identify those asymptoting the inviscid solution and
which are the Booker and Bretherton (1967) solutions, and
those with exponential growth with altitude and which
are purely due to dissipations. The fact that they have
exponential growth explains why the system we analyse is
almost impossible to integrate numerically from z ≈ ∞ to
the surface.

A.1 Homogeneous solution

A.1.1 Outer solution
When 𝜆 ≪ 1 and without the right-hand side terms, the set
of Equations 28a–28d reduce to the homogeneous inviscid
equations. We will use this approximation where Z ≫ 𝛿;
and as 𝛿 > 𝜆, they can be solved using the background

profiles approximated by

U ≈ d tanh Z + za

d
, B ≈ J(Z + za). (A2)

For such profiles, the inviscid homogeneous part
of Equations 28a–28d satisfies the Taylor–Goldstein
equation,

d2W

dZ
2 +

[
J

U
2 +

2

d
2

(

1 − U
2

d
2

)

− k
2
]

W = 0, (A3)

the solutions of which can be expressed in terms of
Haenkel functions when d = ∞ or hypergeometric func-
tions when d ≠∞; that is, the solution named wI given in
Lott et al. (2020b, eq. 12) and Soufflet et al. (2022, eq. 13)
respectively. The only difference with Lott et al. (2020b)
and Soufflet et al. (2022) is that the critical level is at
Z = −za rather than at Z = 0, a behaviour that is transpar-
ent when we write the asymptotic forms

WI(z) = wI(k,Z + za)

≈
⏟⏟⏟

Z→∞

e−m(Z+za), (A4)

≈
⏟⏟⏟

Z→0

a1

(
Z + za

)1∕2−i𝜇

+ a2

(
Z + za

)1∕2+i𝜇
= WIM, (A5)

where the a1 and a2 are given by Lott et al. (2020b, eq. 13)
when d = ∞ and by Soufflet et al. (2022, eq. A12) when
d ≠ ∞. Still in Equation (A5), we have

𝜇 =
√

||||
J − 1

4
||||

and m =
√

|k
2
− J∕d

2
| (A6)

when J > 1∕4 and when k
2
d

2
> J respectively. When

J < 1∕4, 𝜇 is changed to i𝜇; and when k
2
d

2
< J, m is

changed to −i sign(k)m. The solution in Equation (A5)
corresponds to a “unit amplitude” exponentially decay-
ing mode when Z →∞ (or backward-propagating wave
when m is imaginary). Near the surface Equation (A5)
behaves like the linear combinations of the near critical
level solutions of Booker and Bretherton (1967), the crit-
ical level being located below the surface (at Z = −za).
The function wIM in Equation (A5) is a matching func-
tion that will play a central role in the build up of uniform
approximations.

Finally, note that when the shear varies in the far
field the hydrostatic approximation is simply obtained by
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changing m in Equation (A6) by

m = −i sign(k)
√

J∕d. (A7)

A.1.2 Matching region
An important aspect of our work is that there exists a
matching region when Z is small but above the sur-
face layer where dissipative effects start being significant.
In this region, the background wind shear and strati-
fication are almost constant—in dimensional form, see
Equation (13)—and we can find an approximate form of
the viscous solutions that will match the outer solution and
that will allow one to initialize analytically the inner layer
numerical integration. In this matching region, the homo-
geneous parts of Equations 28a–28d are approximated by

ik(Z + za)u +W + ik p − 2𝜆
2
𝜕Z𝜕Zu = 0. (A8a)

ik(Z + za)b + JW − 𝜆2
𝜕Z

(
𝜕Zb + J𝜕Zu

)
= 0, (A8b)

𝜕Zp − b = 0 and ik u + 𝜕ZW = 0, (A8c)

which can be approximated by one sixth-order equation
for W:

2𝛿
6
W

(6)
− 3i(Z + za)𝛿

3
W

(4)
− (2 − J)i𝛿

3
W

(3)

− (Z + za)2W
(2)
− JW = 0.

(A9)

To find asymptotic solutions, we follow Koppel (1964) and
try the WKB ansatz,

W(Z) = A(Z + za) eB(Z+za)∕𝜖, (A10)

where A and B are functions and 𝜖 a small parameter. If we
use that

W
(n)
≈

[
AḂn

𝜖n + n ȦḂn−1

𝜖n−1 + n(n − 1)
2

AB̈Ḃn−2

𝜖n−1

+ O(𝜖2−n)
]

eB∕𝜖
,

(A11)

a choice that leaves non-degenerated Equation (A9) at the
leading order is 𝜖 = 𝛿

3∕2
. In this case and at order 𝜖−2 one

has

2Ḃ6 − 3i(Z + za)Ḃ
4 − (Z + za)2Ḃ2 = 0. (A12)

This admits three solutions corresponding to disturbances
that do not grow exponentially in the far field:

Ḃ = 0, Ḃ = −
√

i
√

Z + za, and

Ḃ = −
√

i∕2
√

Z + za.

When Ḃ = 0, all terms with powers in 𝛿 in Equation (A9)
are small and give the two inviscid solutions of Booker and
Bretherton (1967):

(Z + za)(1∕2)−i𝜇; (Z + za)(1∕2)+i𝜇
. (A13)

For Ḃ ≠ 0, one needs to go to order 𝜖−1 and obtain

Ȧ[12Ḃ5 − 12i(Z + za)Ḃ
3 − 2(Z + za)2Ḃ] + A[30B̈Ḃ4

− 18i(Z + za)B̈Ḃ2 − (2 − J)iḂ3 − (Z + za)2B̈] = 0.
(A14)

After substitution of Ḃ this gives

Ȧ
A
= − 9 + 2J

4(Z + za)
and Ȧ

A
= − 5 − 2J

4(Z + za)
(A15)

for Ḃ = −
√

i
√

Z + za and Ḃ = −
√

i∕2
√

Z + za respec-
tively. This gives two other WKB solutions:

(Z + za)−(9+2J)∕4 e−(2∕3)
√

i[(Z+za)𝛿]3∕2 ;

(Z + za)−(5−2J)∕4 e−(2∕3)
√

i∕2[(Z+za)∕𝛿]3∕2
.

(A16)

The inner solutions having these asymptotic behaviours do
not need to be matched to the outer solution because they
decay exponentially fast in the vertical; they are mandatory
to satisfy the three no-slip surface conditions.

A.1.3 Inner solutions
To evaluate the solution when Z → 0, we next introduce
the inner layer scale and the inner variables:

𝛿 =

(
𝜆

2

k

)1∕3

, Z + za = 𝛿(Z̃ + z̃a), W = 𝛿 k W̃,

p = 𝛿 p̃, u = ũ, b = b̃.
(A17)

With these new variables and at leading order, the homo-
geneous part of Equations 28a–28d transforms into

iŨũ + ŨZ̃W̃ = −ip̃ + 𝜕Z̃2Λ̃𝜕Z̃ũ, (A18a)

iŨb̃ + JŨZ̃W̃ = 𝜕Z̃Λ̃(𝜕Z̃b̃ + J𝜕Z̃ũ), (A18b)

𝜕Z̃p̃ = b̃, and iũ + 𝜕Z̃W̃ = 0. (A18c)

Here, we have also written

U ≈ 𝛿Ũ, where Ũ = 𝜆̃

𝜅

log
[

sinh 𝜅(Z̃ + z̃0)∕𝜆̃
sinh 𝜅z̃0∕𝜆̃

]
,

Λ̃ = tanh
(
𝜅

Z̃ + z̃0

𝜆̃

)
,

(A19)
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LOTT et al. 17

which take into account that in the inner layer U scales as
𝛿 and U ≈ UV. As in Lott et al. (2020a), three solutions of
Equations A18a–A18c are evaluated numerically using a
standard Runge–Kutta algorithm with adaptative vertical
mesh, the integrations typically starting around z̃ ≈ 5 ini-
tialized by the matching functions and integrated toward
the surface.

More specifically, and to ensure the matching with
the outer solution, we first evaluate the inner solu-
tion W̃2, which almost coincides with the matching
function WIM when Z̃ →∞; that is, we initialize the
integration with

W̃2 ≈
⏟⏟⏟

z̃→∞

ã1(z̃ + z̃a)1∕2−i𝜇 + ã2(z̃ + z̃a)1∕2+i𝜇
,

where ã1 =
a1

k
𝛿

−1∕2−i𝜇
, ã2 =

a2

k
𝛿

−1∕2+i𝜇
. (A20)

Second, and to permit the satisfying of the three boundary
conditions, we also evaluate numerically the two solu-
tions that are exponentially small in the far field; that is,
the two solutions W̃3 and W̃4 with asymptotic behaviours,
Equation (A16):

W̃3 ≈
⏟⏟⏟

Z̃→∞

(Z̃ + z̃a)−(9+2J)∕4 e−(2∕3)
√

i(z̃+z̃a)3∕2

and

W̃4 ≈
⏟⏟⏟

Z̃→∞

(Z̃ + z̃a)−(5−2J)∕4 e−(2∕3)
√

i∕2(Z̃+z̃a)3∕2
. (A21)

A.1.4 Uniform approximations
Now that we have inner, matching, and outer solutions,
we can build uniform approximations out of the three, but
all have to be written with the same coordinate. If we take
the outer coordinate for instance, the uniform approxima-
tion for the vertical velocity of the outgoing solution can
be written

W2U(Z) = WI(Z) + k 𝛿W̃2(Z∕𝛿) −WIM(Z), (A22)

whereas the uniform approximations of the viscous solu-
tion corresponding to W̃3 and W̃4 simply consist of writing
them using outer coordinates, both functions becoming
exponentially small in the outer layer (in this case, outer
and matching just coincide):

W3U(Z) = k 𝛿W̃3(Z∕𝛿),

W4U(Z) = k 𝛿W̃4(Z∕𝛿). (A23)

A.2 Particular solution

A.2.1 Outer solution (z ≫ 𝜹)
When neglecting the viscous terms in Equations 28a–28d,
a particular solution is the linear approximation of the
difference between the backgrounds expressed in Carte-
sian and curved coordinates (for the wind the difference
U(z) − U(Z)), yielding

uIp = zUZ, bIp = zBZ, pIp = z B(Z),

and WIp = −ik U z.
(A24)

A.2.2 Matching region
In the matching region, this solution is

uMp = z, bMp = Jz, pMp = J(Z + za)z,

and WMp = −ik(Z + za)z.
(A25)

A.2.3 Inner region
In the inner region, we use the scalings in Equations A17
and A19, yielding at leading order

iŨũ + ŨZ̃W̃ + ip̃ − 𝜕Z̃2Λ̃𝜕Z̃ũ = iB̃h, (A26a)

𝜕Z̃p̃ − b̃ = 0, (A26b)

iŨb̃ + B̃Z̃W̃ − 𝜕Z̃Λ̃(𝜕Z̃b̃ + J𝜕Z̃ũ) = 0, (A26c)

iũ + 𝜕Z̃W̃ = 0. (A26d)

The particular solution is obtained through numerical
integration of Equations A26a–A26d initialized by the par-
ticular solution matching the function in Equation (A25).
If we call W̃Vp(k, Z̃) the solution, a uniform expression of
the particular solution can be written

WUp(k,Z) = WIp(k,Z) + k 𝛿W̃Vp(k,Z∕𝛿)

−WMp(k,Z),
(A27)

with similar expressions for uUp and bUp.

A.3 Boundary conditions
We then rewrite the complete flow fields combining lin-
early the three homogeneous uniform solutions and the
particular uniform solution,

W(X ,Z) =
∫

+∞

−∞

[
f2(k)W2U(k,Z)

+ f3(k)W3U(k,Z)

+ f4(k)W3U(k,Z)

+WpU(k,Z)
]

eik X dk,

(A28)
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18 LOTT et al.

with similar expressions for u, b, and p. With this notation,
the surface conditions in Equation (29) give

f2(k)W2U(k, 0) + f3(k)W3U(k, 0)

+ f4(k)W4U(k, 0) = −WUp(0),
(A29)

with similar expression for u and b. The three relations
obtained for each k permit one to evaluate the coefficients
fi(k) and reconstruct the wave field after inverse Fourier
transform and interpolation on the rectangular grid.
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