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Abstract The representation of turbulent fluxes during oceanic convective events is important to capture
the evolution of the oceanic mixed layer. To improve the accuracy of turbulent fluxes, we examine the
possibility of adding a non‐local component in their expression in addition to the usual downgradient part. To do
so, we extend the k–ε algebraic second‐moment closure by relaxing the assumption on the equilibrium of the
temperature variance θ′2. With this additional evolution equation for the temperature variance, we obtain a
k–ε–θ′2 model (the “kεt” model) which includes a non‐local term for the temperature flux. We validate this new
model against Large Eddy Simulations (LES) in three test cases: free convection (FC), wind‐driven mixing, and
diurnal cycle (DC). For wind‐driven mixing, kεt is equivalent to k–ε. However, in the presence of a buoyancy
flux (FC and DC), we find that the vertical profile of temperature of the LES is better captured by kεt than k–ε.
Particularly, the non‐local term increases the fraction of the mixed layer that is stably stratified. For FC, this
fraction is near 50% for both kεt and the LES, whereas the k–ε value is 20%. We show that this improvement is
due to a better representation of the temperature variance in the inner part of the mixed layer. This better
representation ismainly caused by the diffusion of temperature variance,which is described by kεt and not by k–ε.

Plain Language Summary Cooling of the ocean surface creates dense cold water that tends to sink
and vertically mix the water column. In numerical models, this vertical mixing is often represented by a
diffusion of heat. This choice results in a “step‐by‐step” mixing from the ocean surface. However, in the case of
strong surface cooling, the dense water parcels created at the top of the ocean sink rapidly, keeping their
“coherence” during the descent. They only finally mix with the surrounding waters at depths of hundreds of
meters. This cannot therefore be represented by a “step‐by‐step” mixing from the ocean surface. This kind of
phenomenon is often referred to as coherent eddies or non‐local turbulence. In this article, we perform an
analytical derivation to give a mathematical expression of the impact of non‐local turbulence. We then compare
our new model with more realistic three‐dimensional models of the ocean turbulence and conclude that the new
term derived here is important to reproduce the vertical temperature profile in the surface ocean.

1. Introduction
In the realm of climate modeling, the oceanic mixed layer plays a critical role because it is responsible for
regulating oceanic heat uptake and carbon storage. This storage depends on the maximum value of mixed layer
depth reached during the year (see for example Luyten et al., 1983; Williams et al., 1995). These deepest mixed
layers are often obtained in late winter, when ocean surface cooling has been frequent. Surface cooling triggers
convective events in which convective plumes can mix the ocean over hundreds of meters and therefore put the
mixed layer in direct contact with the deep ocean. Heat and carbon are then stored when the mixed layer becomes
shallower and the direct contact with the atmosphere is lost, until same depths will be reached again at another
time. Our representation of carbon and heat storage affects, for instance, our ability to make accurate predictions
about future climate patterns (Treguier et al., 2023). This is just one example showing why accurately repre-
senting the mixed layer and the convective events is crucial in ocean models.

The depth of the mixed layer changes in response to various factors: it deepens when turbulent mixing is triggered
by the mechanical effect of the wind or waves; or triggered by air‐sea buoyancy fluxes: heat flux (cooling) or
freshwater flux (evaporation, sea‐ice formation). Conversely, the mixed layer becomes shallower typically when
calm weather allows mixed layer instabilities to develop; or when there is a stabilizing buoyancy flux due to
warming (e.g., sunny conditions) or freshwater input (e.g., precipitation, sea‐ice melt, or river discharge). This
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restratification allows the surface layer to separate from the denser, deeper water (Stull, 1988). In climate models,
it is of course impossible to explicitly capture the small‐scale turbulence responsible for the vertical mixing near
the air‐sea interface because the horizontal grid spacing is often on the order of tens of kilometers and the vertical
grid spacing is on the order of meters. Instead, the ocean modeling community has developed parameterizations
whose goal is to represent the mean effect of the turbulent fluctuations (Burchard & Bolding, 2001; Cheng
et al., 2002; Fox‐Kemper et al., 2008; Gaspar et al., 1990; Large et al., 1994; Reichl & Hallberg, 2018). The main
purpose of a mixed layer parameterization is to propose a closure for the turbulent vertical fluxesw′x′, wherew′ is
the turbulent vertical velocity, x′ the turbulent fluctuation of a property x (momentum, temperature, salinity,
phytoplankton, etc…) and the overline denotes the ensemble averaging over small‐scale fluctuations (see
Stull, 1988). These turbulent fluxes, and all the other covariances x′y′ (with y another property), are called the
second‐order moments. The traditional approach to close this problem consists of expressing these turbulent
fluxes as a function of the vertical gradient of the mean property X = x (i.e., a downgradient parameterization), as
shown here for the temperature

w′θ′ = − Kt∂zΘ, (1)

with Kt an eddy diffusivity coefficient. Among all the possibilities to compute Kt we would like to emphasize the
Generic Length Scale (GLS) approach (Umlauf & Burchard, 2003) and more precisely the k–ε closure (Burchard
& Bolding, 2001; Umlauf & Burchard, 2005). This closure consists of deriving two equations: one for the
evolution of turbulent kinetic energy (TKE) k, and one for dissipation ε. In this formalism, the downgradient
formulation (Equation 1) results frommore complex algebraic second‐moment closures even if it is not assumed a
priori (Burchard & Baumert, 1995). The eddy diffusivity is obtained analytically and is a function of TKE,
dissipation, buoyancy frequency, and shear frequency. While this eddy diffusivity approach has been successfully
applied in the oceanic and atmospheric modeling communities, it has also been quickly recognized that the shape
of the temperature profile during a convective event is not well captured by this closure. In fact, Deardorff (1972)
was among the first to realize that after a convective event, the stratification profile in the mixed layer is not
neutral as one would expect for a perfectly well‐mixed layer but is instead slightly stable. To illustrate this
observation, we plot in Figure 1a the typical shape of a normalized temperature profile in the mixed layer from a
numerical model that explicitly resolves convection (seeMironov et al. (2000); details about the normalization are
provided henceforth; we only wish to focus here on the shape of the temperature profile). This profile can be
decomposed into two well‐defined zones. Just below the air‐sea interface, there is an unstable zone with cold

Figure 1. Normalized profile from Large Eddy Simulations data of Mironov et al. (2000) of (a) the temperature and (b) the
vertical turbulent temperature flux. The depth is normalized by the mixed layer depth hm, defined here as the minimum of the
temperature flux. The temperature flux is normalized by its surface value w′θ′|0. The temperature is normalized in
(Θ − Θmax)/Θ∗ with Θmax the maximum of the temperature over the vertical and Θ∗ = w′θ′|0/w∗ a scaling of the
temperature, with w∗ = (w′θ′|0 hm)

1/3 a scaling of the velocity of the convective plumes (Marshall & Schott, 1999; Willis &
Deardorff, 1974). Red dashed lines highlight the location ht of the zero of the gradient ∂zΘ and the location hf of the zero of the
temperature flux.
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water above warmer water (∂zΘ< 0) . Such layer is sometimes called the thermal layer (Lazier, 2001) and we
define it here as the layer between the surface and the depth ht at which ∂zΘ = 0. Below that depth ht, we find the
convective layer; a slightly stable layer that extends until the base of the mixed layer hm. Both layers form the
mixed layer. Different criteria for finding the mixed layer depth hm exist and, in Figure 1, we defined it as the
position of the minimum of the temperature flux. The position of ht has been documented to be near z = − 0.4hm
(see Zhou et al., 2018) such that more than half of the mixed layer is stably stratified. The presence of such stable
stratification in the convective layer has been attributed to downward propagating plumes which remain coherent
during their descent and deposit their negative buoyancy anomaly at their neutral level, thus creating a stable
stratification (see Arakawa and Schubert (1974) or Emanuel (1991) for the atmospheric scenario).

Several options have emerged in the literature to reproduce this vertical temperature profile with a stable strat-
ification. The atmospheric community has favored the use of a mass flux parameterization which simulates the
vertical movement of air parcels within convective clouds. The so‐called “mass‐flux” represents the ascent and
descent of parcels, which transport heat, moisture, and other properties (Siebesma et al., 2007). These mass flux
parameterizations have recently been introduced in ocean models (Garanaik et al., 2024; Giordani et al., 2020).
Another perhaps older approach taken by Large et al. (1994) is to add a positive “non‐local” term Γ in the
parameterization of the flux in Equation 1 (see also Troen and Mahrt (1986); or Burchard and Petersen (1999)
where the problem of missing non‐local fluxes in downgradient parameterization is stated):

w′θ′ = − Kt∂zΘ + Γ. (2)

Γ being positive, it represents a positive turbulent temperature flux, that is, a flux that follows the buoyancy effect
(cold going down and hot going up). Γ can thus be viewed as representing coherent structures (“non‐local eddies,”
“coherent plumes”) that are subjected to the buoyancy force. Particularly, we see in Equation 2 that Γ allows to
keep a positive turbulent temperature flux in situations of neutral (∂zΘ = 0) or slightly stable (∂zΘ> 0) tem-
perature profiles. In other words, this means that, in stably stratified conditions, coherent structures can be strong
enough to counter the downgradient flux that acts in a counter‐buoyancy direction. Note that this term is

sometimes written w′θ′ = − Kt (∂zΘ − γ) with γ = Γ/Kt (e.g., Deardorff, 1972; Large et al., 1994). In this
formulation, γ corresponds to the maximal stable stratification where a positive turbulent temperature flux can be
maintained even if the downgradient flux generates a counter‐buoyancy effect. In Large et al. (1994), Γ is defined
with some constraints: to be zero at the surface and at the base of the mixed layer such that it is merely a
redistribution of heat. The magnitude and the exact shape of this term are however chosen in a relatively ad hoc
way to respect some empirical rules of convection.

The term Γ is often referred to in the literature as a “non‐local” term (Ghannam et al., 2017; Large et al., 1994). As
mentioned earlier, the denomination “non‐local” refers to the fact that it is supposed to represent non‐local eddies
(coherent plumes). However, Zhou et al. (2018) argue that this often‐implied association of the downgradient
term with local turbulence and the Γ term with non‐local eddies is partially wrong. Another possibility is to call Γ
the “countergradient” term (Deardorff, 1972; Gibbs et al., 2011; Troen &Mahrt, 1986). This refers to the fact that,
in the lower part of the mixed layer which is stable, this term acts with an opposite sign compared to the mean
gradient. However, in the upper part of the mixed layer which is unstable, the denomination “countergradient” is
incorrect since this term acts in a similar way as a downgradient term. We have opted here to keep the “non‐local”
denomination which is commonly used in the literature.

A key aspect of the addition of the non‐local term is to relax the downgradient dependence and particularly the

constraint that the depth hf at which w′θ′ vanishes is equal to the depth ht at which the gradient of the temperature
profile vanishes (see Equation 1). To better understand why this matters, we plot in Figure 1b the vertical tur-

bulent heat flux w′θ′ obtained in the same numerical model as presented before (Mironov et al., 2000). In this
figure, we recover the traditional form of a linear decrease from the surface value (which corresponds to the
magnitude of the surface flux) to a cancellation near the bottom of the mixed layer, which has been observed and
described elsewhere (e.g., Burchard & Bolding, 2001; Large et al., 1994; Van Roekel et al., 2018). The exact
depth at which the heat flux vanishes depends on the surface boundary conditions (wind and heat fluxes) but it has
been documented to be close to hf = − 0.8hm in the free convection (FC) scenario (Garcia & Mellado, 2014).
There is thus an obvious discrepancy between ht = − 0.4hm and hf = − 0.8hm such that Equation 1 cannot hold
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in most of the mixed layer and the addition of an extra term in the definition of the flux is physically relevant. Even
if there is a consensus on the need to add a non‐local component in the definition of the flux, the exact formulation
of this flux remains a matter of debate. To develop a framework that is accurate, robust, and consistent with
existing parameterizations, we have opted to focus on extending the k–ε parameterization. There are at least two
advantages of this approach compared to existing formulations of non‐local terms. First, unlike mass‐flux
schemes where the interaction between the plumes and the environment depends on the entrainment/detrain-
ment parameters that are known to be difficult to parameterize, our analytical derivation ensures that the envi-
ronment flux (downgradient part) aligns consistently with the representation of the plumes (non‐local term).
Second, the development in the k–ε framework allows us not to adopt the assumption of instantaneous equi-
librium of the water column to surface forcings that is strongly embedded in the KPP framework, so that our
formulation allows for memory effects in the development of turbulence in the boundary layer.

We first perform an analytical derivation of the non‐local term. Since Deardorff (1972) and Cheng et al. (2020),

we know that the non‐local term is related to the small‐scale temperature variance θ′2. We will therefore derive a

second‐moment closure that uses a full transport equation for the temperature variance θ′2, in addition to the

second‐moment transport equations for k and ε, thus extending the k–ε model to a k–ε–θ′2 model (henceforth
called the “kεt” model). In this model, we get an analytical expression of a non‐local term that shares several
properties with the KPP non‐local term: it is positive, and vanishes at the surface and at the bottom of the mixed
layer. Last, we test the numerical implementation of kεt against Large Eddy Simulations (LES) and further
compare its results to the predictions of a standard k–ε model and KPP simulations.

2. Derivation and Implementation of the kεt Parameterization
This section introduces the second‐order moments equations. We recall the hypotheses made in the GLS model to
solve this system of equations. Then, we explain how we derive the kεt parameterization in the same formalism.

2.1. Formalism and Second‐Order Moments Equations

The Reynolds Averaged Navier Stokes (RANS) equations used in ocean models are written for the mean ve-
locities U = (U,V,W) and the mean temperature Θ. As in the original derivation of the k–ε model, we consider
here only one active tracer (temperature) that enters the equation of state. The RANS equations include the effect

of turbulent fluctuations through the second‐order moments u′i u′j and u′i θ′; with u′1 = u′, u′2 = v′, and u′3 = w′.
To close the system, we need to provide equations for these moments. We focus here on the procedure derived in
Burchard and Bolding (2001). After adopting their closure assumptions for non‐closed terms, and neglecting the
rotational and viscous effects, the equations of second‐order moments are

∂tu′i u′j + ∂l (Ulu′i u′j + u′i u′j u′l ) = − c1
ε
k
(u′i u′j −

2
3
δijk)

+Pij − c2(Pij −
2
3
δijP)

+Bij − c3(Bij −
2
3
δijB)

− c4kSij
− c5Zij

−
2
3
δijε,

(3)

∂tu′i θ′ + ∂j (Uju′i θ′ + u′i u′j θ′) = − c1T
ε
k
u′i θ′

− (1 − c2T) u′j θ′ ∂jUi − u′i u′j ∂jΘ

+ (1 − c3T) βi θ′2

+ c4T u′j θ′ Vij,

(4)
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∂tθ′2 + ∂j (Ujθ′2 + u′j θ′2) = − 2 u′j θ′ ∂jΘ − 2
1
cT
ε
k
θ′2, (5)

with

• Pij = − ∂lUi u′l u′j − ∂lUj u′l u′i : Production of u′i u′j by the shear
• Bij = βi u′j θ′ + βj u′i θ′: Production/destruction of u′i u′j by the buoyancy
• Sij = 1

2(∂iUj + ∂jUi) : Shear tensor
• Vij = 1

2(∂iUj − ∂jUi) : Vorticity tensor

• Zij = Vil (u′l u′j − 2
3δljk) + Vjl (u′l u′i − 2

3δlik) : Symmetric tensor associated to the vorticity

• k = 1
2(u′2 + v′2 + w′2) : TKE

• P = 1
2Pii: Production of TKE by the shear

• B = 1
2Bii: Production/destruction of TKE by the buoyancy

• ε: Dissipation of TKE

Further definitions are δij the Kronecker delta, β = (0,0,αg), α the thermal expansion coefficient and g the
gravitational acceleration. In all the previous equations and definitions, the Einstein summation convention is
adopted. Note that buoyancy depends only on temperature. The inclusion of salinity and a non‐linear equation of
state add a significant level of complexity (Canuto et al., 2002) and is beyond the scope of this study (see also the
mention of salinity in conclusion).

Closure assumptions for non‐closed terms result in empirical coefficients c1, c2, c3, c4, c5 for the parameterization
of the pressure‐velocity correlation tensor Πij = u′i ∂jp + u′j ∂ip, coefficients c1T , c2T , c3T , c4T for the parame-

terization of the pressure‐temperature correlations Πθ
i = θ′∂ip, and cT for the parameterization of the temperature

variance dissipation. Further details about these parameterizations can be found in Canuto et al. (2001). We report
the values of these coefficients in Table 1. These values are the ones of Canuto et al. (2001)modelA, converted into
the notations used here (it is the same as the values reported in Table 1 of Burchard and Bolding (2001) except for
minor typos on c3 and c4 that have been identified. Exact formulations of these coefficients are given in
Appendix D).

We are now going to explain the classic procedure used in the GLS models for closing the system, where the new
model differs and what are the consequences.

2.2. GLS Procedure (k–ε Model)

The GLS procedure is as follows. First, we consider the boundary layer approximation where the vertical scale is
much less than the horizontal scale. Horizontal gradients are then neglected in comparison to the vertical gra-
dients. A direct consequence is the simplification of the continuity equation in ∂zW = 0. The resulting expres-
sions of the tensors Pij, Bij, Sij, Vij and Zij are given in Appendix E.

Second, we consider that the moments u′i θ′ and θ′2 are in local equilibrium, meaning that the sum of the time
variations, the advective transports and the turbulent transports of these moments is zero (i.e., the left‐hand sides
of Equations 4 and 5 are zero). Concerning the moments u′i u′j , the trick is to not make this assumption directly for
u′i u′j but rather to the anisotropic part of these moments u′i u′j − 2/3 δijk to keep the time variation and the
transports of the TKE to be non‐zero. These assumptions correspond to the level 2 1

2 in the hierarchy of models
proposed by Mellor and Yamada (1982). This hierarchy has been derived with scaling arguments based on the
level of anisotropy of every term. The scaling at level 3 results naturally in neglecting transports and time var-

iations for u′i u′j − 2/3 δijk and u′i θ′. However, neglecting these terms for the θ′2 equation is not justified by the
scaling process and is much more an ad hoc practical hypothesis that results in obtaining this so‐called level 2 1

2 in
which the system of equations is now algebraic. Indeed, making all these assumptions on Equations 3–5 leads to
the following set of equations

Table 1
Values of the Coefficients Appearing in the Second‐Order Moment Equations

c1 c2 c3 c4 c5 c1T c2T c3T c4T cT

2.5 0.984 0.5 0.512 0.416 5.95 0.6 0.33 0.4 1.44
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0 = − c1
ε
k
(u′i u′j −

2
3
δijk) + (1 − c2) (Pij −

2
3
δijP) + (1 − c3) (Bij −

2
3
δijB) − c4kSij − c5Zij, (6)

0 = − c1T
ε
k
u′i θ′ − (1 − c2T) u′j θ′ ∂jUi − u′i u′j ∂jΘ + (1 − c3T) βi θ′2 + c4T u′j θ′ Vij, (7)

0 = − 2 u′j θ′ ∂jΘ −
2
cT
ε
k
θ′2, (8)

which, if we assume that k and ε are known, is a linear system of 10 equations with 10 unknowns: (u′2, v′2, w′2,

u′v′, u′w′, v′w′, u′θ′, v′θ′, w′θ′, θ′2). For clarity, these 10 equations are written explicitly in Appendix F. We
solved this system thanks to the symbolic calculus software Mathematica and we confirmed the expressions
obtained by Burchard and Bolding (2001):

u′w′ = − fm
k2

ε ∂zU, (9)

v′w′ = − fm
k2

ε ∂zV, (10)

w′θ′ = − fh
k2

ε ∂zΘ, (11)

which reflect downgradient fluxes with an eddy viscosity Km = fm k
2

ε and an eddy diffusivity Kt = fh k
2

ε . The
dimensionless functions fm and fh are the so‐called “stability functions” and can be expressed in the following
forms

fm =
n0 + n1αN + n2αM

d0 + d1αN + d2αM + d3αNαM + d4α2N + d5α2M
, (12)

fh =
n0T + n1TαN + n2TαM

d0 + d1αN + d2αM + d3αNαM + d4α2N + d5α2M
, (13)

with αN = k2
ε2N

2, αM = k2
ε2M

2, N2 = − g/ρ0 ∂zρ = gα ∂zΘ the (squared) buoyancy frequency,

M2 = (∂zU)
2
+ (∂zV)

2 the (squared) shear frequency, and ρ0 the reference density. Coefficients ni, niT , and di
depend on the coefficients ci and ciT . Their analytical expressions and numerical values are given in Appendix G.

To compute the fluxes in Equations 9–11, we still need to know k and ε. In a GLS model, we solve two prognostic
equations, one for k and one for another variable that can be linked to ε. The choice of this second equation is the
main difference between the different GLS models (k–ε: Hanjalić and Launder (1972); Rodi (1987), k–kl: Mellor
and Yamada (1982), k–ω: Wilcox (1988), k–τ: Zeierman and Wolfshtein (1986); Thangam et al. (1992)). In this
paper, we focus on the k–ε model which solves directly the equation for ε. The TKE equation and the ε equation
are as follows

∂tk = P + G − ε +Dk, (14)

∂tε =
ε
k
(cε1P + cε3G − cε2ε) +Dε, (15)

with

• Dk = ∂z(
Km
σk
∂zk) and Dε = ∂z(

Km
σε
∂zε): Diffusion terms

• σk and σε: Schmidt numbers for TKE and dissipation
• P ≡ (− u′w′ ∂zU − v′w′ ∂zV) = fmαMε: Production of TKE by the shear
• G ≡ β3 w′θ′ = − fhαNε: Production/destruction of TKE by the buoyancy
• cε1, cε2 and cε3: Empirical coefficients
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The TKE Equation 14 was obtained by taking the trace of the Reynolds stress Equation 3.With the boundary layer
approximation which neglects the horizontal gradient in comparison to the vertical ones, taking this trace gives
∂tk + 1

2(∂zw′u′i u′i ) = P + G − ε. We then consider downgradient formulations for the third‐order moments

w′u′i u′i and we finally obtain Equation 14. We want to highlight that the diffusion term thus comes from the
divergence of the third‐order moments.

An exact equation for ε can be derived but, in practice, this equation needs additional assumptions to be closed.
The classic assumptions discussed in the literature (well detailed in equations 3.1–3.5 of Hanjalić and
Launder (1972)) are equivalent to scaling the sources and sinks of ε with the ones of the TKE through empirical
coefficients cε1, cε2, and cε3 (see Burchard & Bolding, 2001). This gives Equation 15.

Values σk = 1, cε1 = 1.44 and cε2 = 1.92 are frequently used in the literature (Rodi, 1987). Value σε = 1.20 is
found according to Equation 14 of Umlauf and Burchard (2003). Finally, for cε3, it is common practice to consider
two different values in order to keep cε3G always as a source term of ε (Burchard & Bolding, 2001; Reffray
et al., 2015; Rodi, 1987; Umlauf & Burchard, 2003; Warner et al., 2005). A positive value c+ε3 = 1 is used when G
is positive (unstable stratification) and a negative value c−ε3 = − 0.65 is used when G is negative (stable strati-
fication). This value c−ε3 = − 0.65 is obtained according to Equation 26 of Umlauf et al. (2003) (by considering a
steady‐state Richardson number equal to 0.25).

2.3. Procedure for the kεt Model

The new procedure differs from the GLS one by considering that the temperature variance θ′2 is not at equilibrium
anymore. Relaxing this assumption takes us from the level 2 1

2 to the level 3 in the hierarchy of Mellor and

Yamada (1982). Beyond this mathematical justification, the idea of keeping the non‐equilibrium θ′2 equation

originates from the fact that the θ′2 dependence appears only in the w′θ′ equation (see Equations 3 and 4). Thus, a

physical change in the shape of the θ′2 profile will directly impact w′θ′. Because we now have an equation for the
temperature variance, we are left with Equations 6 and 7 that form a system of nine equations with nine un-

knowns: (u′2, v′2, w′2, u′v′, u′w′, v′w′, u′θ′, v′θ′, w′θ′). For clarity, these nine equations are written explicitly in
Appendix H. We solve this system with Mathematica and we obtain

u′w′ = − fm
k2

ε ∂zU, (16)

v′w′ = − fm
k2

ε ∂zV, (17)

w′θ′ = − fh
k2

ε ∂zΘ + f ∗
h
k
εβ3 θ

′2. (18)

The momentum fluxes are still downgradient with an eddy viscosityKm = fm k
2

ε whereas the temperature flux now

has a “non‐local” contribution Γkεt = f ∗
h
k
εβ3 θ

′2 related to the temperature variance in addition to the downgradient

part with eddy diffusivity Kt = fh k
2

ε . The stability functions fm, fh and f
∗
h can be expressed in the following forms

fm =
n0 + n1αN + n2αM + n3αT

d0 + d1αN + d2αM + d3αNαM + d4α2N + d5α2M
, (19)

fh =
n0T + n1TαN + n2TαM

d0 + d1αN + d2αM + d3αNαM + d4α2N + d5α2M
, (20)

f ∗
h =

n∗
0T + n∗

1T αN + n∗
2T αM

d0 + d1αN + d2αM + d3αNαM + d4α2N + d5α2M
, (21)

with αN = k2
ε2N

2, αM = k2
ε2M

2, and αT = k
ε2β

2
3 θ

′2. Coefficients ni, niT , n∗
iT , and di depends on the coefficients ci

and ciT . Their analytical expressions and numerical values are given in Appendix I.
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As in the GLS procedure, the TKE and ε equations (Equations 14 and 15) are solved prognostically. The only
differences in these equations are about the terms G and P that differ through the new expressions of the stability
functions fm and fh, and by the additional influence of f ∗

h in G = − fhαNε + f ∗
h αTε.

The key change of the kεt model is that the temperature variance is now also solved prognostically through:

∂tθ′2 = − 2 w′θ′ ∂zΘ −
2
cT
ε
k
θ′2 +D

θ′2
, (22)

withD
θ′2
= ∂z( Km

σ
θ′2
∂zθ′2) the diffusion and σθ′2 the Schmidt number for the temperature variance. As for the TKE

equation, the diffusion term D
θ′2

results from the closure of the third‐order moment w′θ′θ′ by a downgradient

formulation (Moeng &Wyngaard, 1989). Using LES data, we have compared w′θ′θ′ and Km
σ
θ′2
∂zθ′2 and found that

σ
θ′2

is order unity (not shown). We thus opted for taking σ
θ′2
= 1.

We can add three general remarks before closing this section. The expression of Γkεt = f ∗
h
k
εβ3 θ

′2 obtained for the

temperature flux can be compared to the one found by Deardorff (1972). By reasoning with the w′θ′ equation,

Deardorff (1972) finds a non‐local term ΓDeardoff ∝ l/ k1/2 θ′2 with l a mixing length introduced for the parame-
terization of the pressure‐temperature correlation. If we consider the classic scaling l∝ k3/2/ε (see for example

Rodi, 1987; Umlauf & Burchard, 2003, 2005), we obtain ΓDeardoff ∝ k/ε θ′2. The non‐local expressions of Γkεt and
ΓDeardoff thus both exhibit the samedependence on the turbulence time scale k/ε and on the temperature variance θ′2.

In a k–ε model, θ′2 is at equilibrium (i.e., it follows Equation 22 with ∂tθ′2 = 0 and D
θ′2
= 0). It is possible to

diagnose the part of Γkεt that is associated with this equilibrium value and therefore implicitly present in the k–ε
model. This point is detailed in Appendix A.

Finally, we point out that, just as we retained the non‐equilibrium equation of θ′2 to obtain a non‐local term for

w′θ′, it would be tempting to retain the non‐equilibrium equation of w′2 to obtain non‐local terms for the velocity
fluxes u′w′ and v′w′. We solved this problem and found that the velocity fluxes u′w′ and v′w′ in this context are

still downgradient. Results of this k–ε–θ′2–w′2 model are detailed in Appendix C.

2.4. 1D Models Simulations

We implemented the kεt parameterization, with the formalism described in Section 2.3, in the 1D code presented
in Fearon et al. (2020). This code is a standalone 1D vertical version of the Coastal and Regional Ocean
COmmunity model (CROCO, https://www.croco‐ocean.org/) and allows to run simulations with KPP, TKE, and
several GLS schemes (note that we also re‐implemented the k–ε model with the formalism presented in Sec-
tion 2.2, that is equivalent to using the Canuto et al. (2001) stability functions).

In this code, the marching steps are as follows. For a given time step, we first solve the equations for the TKE and
ε. We then calculate the associated diffusion coefficients Km and Kt. Finally, the equations for the mean variables
(U, V, Θ) are solved. For the implementation of the kεt model, we added the resolution of the θ′2 equation at the
same time as the TKE and the ε equations.

For the time‐discretization of the temperature variance Equation 22, the k, ε, Kt, Km, f ∗
h , and ∂zΘ values used are

the ones of the previous time step (explicit expression). For the terms involving θ′2, the following choices are
made:

1
Δt

( θ′2⏟⏞⏞⏟
n+1

− θ′2⏟⏞⏞⏟
n

) = 2 Kt(∂zΘ)
2
− β3 f ∗

h k/ε ∂zΘ θ′2⏟⏞⏞⏟
see text

−
2
cT
ε/k θ′2⏟⏞⏞⏟

n+1

+ ∂z(
Km

σ
θ′2

∂zθ′2⏟⏞⏞⏟
n+1

)

(23)
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The diffusion is expressed implicitly because of the possibly large value of the
diffusivity coefficient which would require small time steps. For the other

terms, the Patankar trick is used to preserve the positivity of θ′2 (Burch-
ard, 2002; Lemarié et al., 2021; Patankar, 1980). This trick consists of
expressing implicitly all the negative terms of the right‐hand side (such as the
dissipation term). The second right‐hand side term is thus expressed explicitly
if ∂zΘ< 0 and implicitly if ∂zΘ> 0. Boundary conditions for the temperature
variance are zero at the bottom of the domain (Dirichlet condition), while at
the surface a homogeneous Neumann condition is used for simplicity (no flux
of temperature variance).

For every test case, we performed the simulations using k–ε, kεt, and KPP.
The changes induced by kεt, particularly the influence of the non‐local term,
will be analyzed by comparing with k–ε. Concerning KPP, the simulations
were done with and without its non‐local term. The goal is to compare this
term and its effect to the non‐local term obtained in kεt. The version of KPP
used here is the original one described in Large et al. (1994).

2.5. LES

In order to validate the kεt model, we performed several LES. Practically, we use the Basilisk code (http://
basilisk.fr, Popinet, 2020) to solve the three‐dimensional Boussinesq equations in a small oceanic patch near the
air‐sea interface. We intend to explicitly compute the turbulent fluxes and the mean vertical profiles of tem-
perature for buoyancy‐driven convection and wind‐driven turbulence. The domain is periodic in the horizontal
direction. All variables are discretized at the cell center and are advected using the Bell‐Collela‐Glaz method.
There is no explicit viscosity and no explicit diffusivity: both these terms are handled implicitly by the advection
scheme. The surface forcing (wind and heat flux) is applied at the upper grid cell with a relaxation term. The
bottom boundary condition is free slip for the velocity and inhomogeneous Neumann for the temperature (set to
the initial stratification). The model is initialized with zero velocity and prescribed stratification for temperature
(see next paragraph) to which we add a small random perturbation of magnitude 10− 3 K. We use an adaptive time
step adjusted with a CFL condition of 0.6. Averages are computed in a post‐processing step: the overbar is
interpreted here as a horizontal average and primes are deviations from this horizontal average. No temporal
averaging is done.

2.6. The Three Test Cases

We evaluate the performance of the kεt parameterization with three different idealized surface forcing test cases:
FC, wind‐driven mixing (W), and diurnal cycle (DC). These cases are similar to the ones proposed by Van Roekel
et al. (2018). The parameters for these three simulations are detailed in Table 2. For all three simulations, we take
a linear equation of state ρ = ρ0 [1 + α(Θ − Θ0)]with ρ0 = 1,025 kg/m3 the reference density, α= 2×10− 4 K− 1

the thermal expansion coefficient, and Θ0 = 293.15 K the reference temperature. Rotational effects are not
included. The LES domain size is Lx = Ly = 100 m, and Lz = 50 m (W, DC) or Lz = 100 m (FC). The grid
resolution is isotropic (0.23 m) with 512 × 512 × 256 (W, DC) or 512 × 512 × 512 (FC) grid cells. The choice
of the aspect ratio Lz/Lx affects the convergence of the horizontal averaging, it is hence a trade‐off between
computation cost and quality of the resulting mean profiles. For the 1D simulations, the same vertical grids are
used, and the time step is 360 s.

The temporal evolution for the DC test case of the net surface heat flux Q0 = QNonSol + QSol is made of
QNonSol = − 75 W m− 2 and a solar radiation QSol written as

QSol = 235.62 max[cos(2πt/86400 − π); 0]. (24)

This solar radiation QSol penetrates through the water column according to a two‐band exponential formulation
with coefficients of a Jerlov type IB water mass (Paulson & Simpson, 1977). A graphical representation of Q0
over a day is given in the results section in Figure 5b.

Table 2
Summary of the Parameters Used for the Three Test Cases

Test case FC W DC

Duration 7 days 30 hr 10 days

QNonSol (W/m2) − 75 0 − 75

QSol (W/m2) 0 0 See text

τw (Pa) 0 0.1 0
dΘ
dz

⃒
⃒
⃒
0
(K/m) 0.01 0.05 0.01

N2
0 (s

− 2) 2 × 10− 5 1 × 10− 4 2 × 10− 5

Note.All three start with an initial homogeneous stable stratification dΘ
dz

⃒
⃒
⃒
0
(the

associated N2
0 is also given) and a surface temperature Θsurf = 293.15 K.
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For FC and wind‐driven mixing, the results will be compared with analytical solutions of the time evolution of hm.
For FC, the following evolution laws have been proposed (Marshall & Schott, 1999; Souza et al., 2020; Van
Roekel et al., 2018)

hm =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2 Q0 t/N2
0

√

(Marshall & Schott, 1999), (25)

hm =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2.8 Q0 t/N2
0

√

(Van Roekel et al., 2018), (26)

hm =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3 Q0 t/N2
0

√

(Souza et al., 2020), (27)

with Q0 the net surface heat flux, N0 the initial buoyancy frequency, and t the time. All three formulas have been
confirmed by LES in their respective articles, so there is a priori no clue as to which one to choose. Van Roekel

et al. (2018) shows that the prefactor 2.8 corresponds to the empirical rule of convection w′θ′(hm)/w′θ′0 = − 0.2
(cf., Figure 1b and for example Large et al., 1994). Differences between the three formulas then likely indicate
that the value − 0.2 is not universal and depends on the intensity of the forcings, as suggested by Haghshenas and

Mellado (2019). Here, for simplicity, we retain the prefactor 2.8 as the value w′θ′(hm)/w′θ′0 = − 0.2 is the most
commonly considered.

For wind‐driven deepening, the following laws have been proposed (Kato & Phillips, 1969; Pollard et al., 1973;
Price, 1979)

hm = u∗(15 t/N2
0)

1/3
(Kato & Phillips, 1969), (28)

hm = u∗(
̅̅̅
2

√
t/N0)

1/2
(Pollard et al., 1973), (29)

hm = u∗(
̅̅̅̅̅̅
1.2

√
t/N0)

1/2
(Price, 1979), (30)

with u∗ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|τw|/ρ0

√
the surface wind friction velocity and |τw| the norm of the wind stress vector at the ocean

surface. We decided to keep the expression of Price (1979) because it relies on constructive criticism of the
formulas proposed by Kato and Phillips (1969) and Pollard et al. (1973) (see also Deleersnijder & Luyten, 1994).

Note that one limitation of these three test cases is that they do not take waves and Langmuir turbulence into
account. Some suggestions for including these processes in k–ε have been proposed (e.g., for waves: Mellor and
Blumberg (2004); e.g., for Langmuir: Axell (2002); Harcourt (2015)) and could be directly implemented in kεt.
Adding these features and analyzing the behavior of kεt in such test cases will be considered in future work.

2.7. Nondimensionalization

In order to compare the shape of the different profiles, variables are made dimensionless. The non‐dimensional
temperature is computed as (Θ − Θmax) / Θ∗, with Θmax the maximum of the temperature over the vertical,

Θ∗ = w′θ′|0/w∗ a scaling of the temperature, w∗ = (− B0hm)1/3 a scaling of the velocity of the convective
plumes (Marshall & Schott, 1999; Willis & Deardorff, 1974), and B0 = gαQ0/ (ρ0cp) the surface buoyancy flux.
This normalization is valid only if B0 is strictly negative and it is thus not used for the W and the DC test cases.

The temperature flux is normalized by its surface value w′θ′|0 = Q0/ (ρ0cp) . The depth is normalized by hm. For
the FC and the W test cases, hm is diagnosed as the depth of the maximum of ∂zΘ. For the LES, we rather take the
mean depth of the 10 highest values because the profiles, which are instantaneous, can be noisy. For the DC test
case, a consequence of the non‐stationary surface forcing is that the profiles can exhibit non‐canonical shapes
(compared to the standard FC and W cases). To compute hm, definitions based on integrated properties are then
better suited than the ones based on thresholds or extrema. We choose to use the criterion proposed by Reichl
et al. (2022) which is based on energetic principles. More precisely, the mixed layer depth is defined as the depth
until which a given energy ϕ could homogenize the surface ocean. We take the value ϕ = 1 J/m2 and we perform
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the calculation thanks to the python package “oceanmixedlayers” developed by the authors (Reichl et al., 2022,
https://github.com/breichl/oceanmixedlayers).

3. Results and Discussion
3.1. Mixed Layer Depth Evolutions

The k–ε and the kεt models exhibit comparable mixed layer depths hm in all three test cases (Figure 2). For W,
both k–ε and kεt give hm close to the analytical solution (Equation 30) whereas the LES exhibits hm which follows
the analytical solution for half a day. After 13 hr, the LES predicts a deeper mixed layer (maybe due to the onset of
internal waves breaking). For DC, both the k–ε and the kεt models result in hm which is close to the LES and the
analytical solution. To sum up, the k–ε and the kεt models predict similar hm, and this hm reproduces well
analytical solutions or the LES. The next sections will describe in more detail all three test cases to highlight the
changes observed with the kεt model in comparison to the k–ε scheme.

3.2. FC Test Case

In Figure 3a, we plot the dimensionless temperature flux profile computed with k–ε, kεt, and the LES at the end of
the 7 days of simulation for the FC test case. The kεt flux is further decomposed into its downgradient (− Kt∂zΘ)
and its non‐local (Γkεt) components (see Equation 18). The non‐local term of KPP is also plotted. The k–ε profile

Figure 2. Temporal evolution of the mixed layer depth hm for (a) free convection, (b) W, and (c) diurnal cycle test cases. The
first 2 hr were removed in each plot to remove noisy hm which correspond to the initial mixed layer establishment.
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exhibits the classic pattern expected for an FC simulation: a linear decrease from the surface to the bottom of the
mixed layer where it reaches a minimum which is approximately − 0.2 times the surface flux. Note that even if the
expression of the total flux changed drastically between k–ε and kεt, the kεt profile is still close to the k–ε profile.
The non‐local flux is positive (by definition), it is zero at the surface and at the bottom of the mixed layer. Hence,
it does not add or remove any heat but rather redistributes heat within the mixed layer. This term is responsible for
warming the upper part of the mixed layer and cooling the lower part of the mixed layer (the temperature equation

is of the form DtΘ = … − ∂zw′θ′ and it is then the sign of − ∂zΓkεt that is important to distinguish between
cooling and warming). This is qualitatively the effect we expect from a coherent plume: plumes grow by
entraining cold water near the surface, resulting in a warming of the upper part of the mixed layer, and then detrain
in the environment, causing a cooling of the bottom part of the mixed layer.

In Figure 3b, we plot the dimensionless temperature profile of k–ε, kεt, KPP, and the LES at the end of the 7 days
of simulation. Dashed lines highlight the location ht, the depth at which ∂zΘ = 0 in each case. The overall
comparison with the LES is better with kεt than with k–ε: while the k–εmodel predicts ht = hf = − 0.86hm (co‐
location ht = hf results from the definition of a pure downgradient flux, see Equation 11 and Figure 3a), this co‐
location constraint is relaxed in the kεt simulation, for which ht = − 0.48hm, and is thus closer to the LES
(ht = − 0.49hm) . The KPP scheme predicts ht = − 0.19hm, whereas the KPP simulation without the non‐local
term ΓKPP gives ht = − 0.83hm. Therefore, ΓKPP has the same expected effect of raising ht as the non‐local
term of kεt, even if none of the two KPP simulations (with or without ΓKPP) give a satisfactory ht in compari-
son to the LES.

Figure 3c shows the temporal evolution of ht/ hm for the 7 days of simulation. In the LES, ht/hm remains between
− 0.35 and − 0.55 during the entire simulation. The k–ε value stabilizes around − 0.85, the KPP simulation quickly
stabilizes near − 0.2 whereas KPP without the non‐local term gives a continuous decrease of ht/ hm with values
reaching − 0.83 at the end of the 7 days. Finally, the kεt curve converges to a value of − 0.5 (comparable to the
value of the LES). We conclude that the kεtmodel performs better than k–ε and KPP for reproducing the shape of
the temperature profile.

In Figure 3d, we plot the dimensionless temperature variance profile of k–ε, kεt, and the LES at the end of the
7 days of simulation. Both schemes reproduce the global shape of the LES profile which consists of a local
maximum at the surface and a local maximum at hm. However, none of the two schemes give a good order of
magnitude for these maxima (values are ≈ 100 times too small). We do not observe a drastic difference between
the kεt and k–ε profiles. However, if the kεt temperature variance profile were equal to the k–ε one, that is, the
equilibrium value, kεtwould reduce to k–ε by definition. In fact, the main differences between the two profiles are
located in the inner part of the mixed layer (Figure 3e). In this zone, kεt better follows the LES than k–ε. The
difference between kεt and the equilibrium value obtained by k–ε is due to either the variance memory ∂tθ′2 or the
diffusionD

θ′2
terms (cf., Equation 22). We performed two alternative runs of the kεt model. One was realized by

setting ∂tθ′2 = 0 (“only diffusion”) and another by taking D
θ′2
= 0 (“only memory”). The temperature variance

profile of the “only diffusion” kεt superimposes with the profile of the “normal” kεt (Figures 3d and 3e). It would
be tempting to say that the memory has no impact. This would imply that the profiles of the “only memory” kεt
would superimpose with the k–ε ones. However, this is not the case (Figures 3d and 3e). Therefore, the contri-

butions of ∂tθ′2 and D
θ′2

do not add up linearly: diffusion is the main contribution to the non‐equilibrium part of

θ′2 in kεt, with a moderate impact of the memory contribution.

Figure 3a shows a comparison between the non‐local term of kεt and the non‐local term of KPP at the end of the
7 days of simulation. Qualitatively, these profiles share the property of vanishing at the surface and at the bottom
of the mixed layer, and therefore act as a redistribution of heat in the mixed layer. Both are also positive, that is,
corresponds to a temperature flux that follows the buoyancy effect (similar to coherent structures that are sub-
jected to the buoyancy force). One difference is that ΓKPP has a single‐mode shape whereas Γkεt presents a bi‐

modal shape. Analyses of the contribution of the different factors of Γkεt = f ∗
h
k
εβ3 θ

′2 (not shown) indicated

that the mode close to the mixed layer bottom is mainly due to a maximum of θ′2 whereas the mode closest to the
surface is a result of a complex interaction of all the terms in the expression of the non‐local term. Knowing that
Γkεt presents a bi‐modal shape could be of interest for adapting the KPP non‐local term. For example, it would be
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Figure 3. Results for the free convection test case. Dimensionless (a) temperature flux profile, (b) temperature profile,
(d) temperature variance profile, and (e) zoomed‐in temperature variance profile of k–ε, kεt, KPP, and the Large Eddy
Simulations at the end of the 7 days of simulation. The KPP model was run with and without its non‐local term ΓKPP. In (b),
dashed lines highlight the location ht of the zero of the gradient ∂zΘ, and (c) shows its temporal evolution ht/hm for each
simulation. In (d), the dashed box highlights the zoomed‐in depths presented in (e). The two alternative versions of kεt presented
in (d) and (e), “only diffusion” and “only memory,” are described in the text.
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possible to write ΓKPP as a sum of two polynomials rather than one (Large et al., 1994). Nevertheless, one should
be careful when doing a comparison of the two approaches because there are several possible definitions of Γkεt as
explained in Appendix A.

3.3. W Test Case

Figure 4 presents the temperature and horizontal velocity profiles of k–ε, kεt and the LES at the end of the 30 hr of
simulation for the W test case. In both cases, the k–ε and kεt are almost superimposed. Therefore, in a situation
with no surface buoyancy flux, kεt does not give any difference in comparison to k–ε. This is further demonstrated

in Appendix B where it is shown that the part of Γkεt associated with the non‐equilibrium value of θ′2 is zero. Since
the scope of this paper is to describe the kεt model and its differences with k–ε, no further analyses are thus made
on the differences between k–ε and the LES in the W test case.

3.4. DC Test Case

In order to get more insight into the memory effect mentioned earlier, we now focus on a DC case for which the
forcing is no longer stationary. In DC, the kεtmodel performs better than k–ε for reproducing the LES temperature
profiles (Figures 5c–5f). At the end of the night (6 hr, Figure 5c), so after 12 hr of FC, the kεt scheme is better to
predict the depth ht (depth of ∂zΘ = 0) separating the unstable and the stable part of the profile. At noon
(Figure 5d), kεt is better close to the surface where k–ε is too unstable and too cold. The same behavior is observed
just after sunset (18 hr, Figure 5e). At midnight (Figure 5f), the 10 first meters of the LES profile are nearly
neutral. This is mainly reproduced by kεt whereas the upper 10 m are unstable for k–ε.

The kεt model better captures the stable/unstable fraction of the temperature profile. This is highlighted in
Figure 6a which shows the percentage of the upper 30 m of the water column which is stably stratified (∂zΘ> 0)
for the 10 days of simulation. During daytime, the solar radiation increases this percentage up to 99% for the LES.
This behavior is better reproduced by kεt (up to 97%) than k–ε (up to 95%). During nighttime, the free convective
conditions decrease this percentage. The lowest value, obtained at the end of the night, decreases over the
simulation as the mixed layer depth becomes closer to 30 m. After 10 days, this value is close to 50% for both kεt
and the LES whereas k–ε gives a too unstable profile with only 20% of it which is stably stratified. Finally, kεt
better captures the instants of the abrupt decreases or increases between daytime and nighttime: k–ε tends to
obtain the abrupt decreases approximately 1 h too early and the sharp increase approximately 2 h too late
(Figure 6b).

Figure 4. Results for the W test case. (a) Temperature profile and (b) horizontal velocity profile of k–ε, kεt and the Large
Eddy Simulations at the end of the 30 hr of simulation. For both cases, the k–ε and kεt curves are difficult to distinguish
because they are almost superimposed.
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Figure 5. Results for the diurnal cycle test case over the ninth day of simulation. Subfigures (a) and (b) give an overview over the day by showing (a) eight temperature
profiles in a single plot for kεt and (b) the evolution of the net surface heat flux Q0 (cf., Equation 24). The next subfigures present the comparison between k–ε, kεt and
the Large Eddy Simulations for (first column) the temperature profiles, and (second column) the temperature variance profiles. These comparisons are given at different
times of the day (6, 12, 18, and 24 hr).
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As for the FC case, kεt does not reproduce better the maxima of the LES temperature variance profile than k–ε
(Figures 5g–5j). However, the remaining part of the LES profile is better represented by kεt than k–ε. As in the FC
case, the “only diffusion” kεt model (i.e., the kεt model with variance memory set to zero, cf., Section 3.2) su-
perimposes almost perfectly with kεt. Therefore, the diffusion is again the main contributor to the non‐equilibrium

part of θ′2.

4. Conclusion
The primary motivation behind this research was the need to improve the representation of oceanic convection
processes in ocean models. A key achievement of this study is the analytical derivation of the non‐local term
within the k–εmodel. With this strategy, we ensure that all components of the parameterization are consistent: this
approach avoids potential redundancy that may arise when adding external components to existing parameteri-
zations. We found that the non‐local term is proportional to the temperature variance (high values of the variance
correspond to a strongly inhomogeneous temperature field). This heterogeneity in the temperature field may in
fact be related to the presence of intense coherent structures (convective plumes) that impact the turbulent fluxes.
Compared to the standard k–ε for which the temperature variance equation is an equilibrium between the pro-
duction and the dissipation terms, the temperature variance equation in kεt contains a diffusion term and a ten-

dency term (∂tθ′2, that we also called “memory term” in this study).

To analyze the impact of both of these terms, and in order to assess the performance of kεt, we have compared this
new parameterization to k–ε and several LES in three test cases: free convection (FC), wind‐driven mixing (W),
and diurnal cycle (DC). For W, kεt is similar to k–ε. This comparison suggests that shear turbulence does not
trigger non‐local processes. It strengthens the idea that non‐local processes are made of convective plumes which
are initiated by buoyancy fluxes. Indeed, kεt differs from k–ε in the presence of a surface buoyancy flux (FC and
DC). In these cases, the main effect of the non‐local term is to modify the shape of the temperature profile and
particularly the part of the mixed layer that is stably stratified. In FC, the LES temperature profile is stably
stratified over the upper 40%–50% of the mixed layer, this is better reproduced by kεt (50%) than k–ε (20%). For
DC, kεt also better reproduces the LES profiles, which present a cycle between very stratified profiles during
daytime (almost 100% of the mixed layer is stably stratified) and profiles that resemble free convective ones
during nighttime. In both FC and DC, we proved that diffusion is the main actor that drives the temperature
variance out of equilibrium. More precisely, the effect of diffusion is to spread the temperature variance in the
inner part of the mixed layer and results in a closer agreement to the LES profile.

Figure 6. Temporal evolution of the percentage of the upper 30 m of the water column which is stably stratified (∂zΘ> 0) in
the diurnal cycle case. The evolution is shown (a) over the 10 days of simulation, and (b) zoomed in on the last 2 days.
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The next step is to extend the derivation to include salinity. We are currently working on this approach: the main
challenge is that the non‐local term for salinity involves coupled equations with temperature, making the
analytical derivation significantly more complex. Solving these coupled equations analytically is mathematically
challenging and may require additional hypotheses. Another issue is also that the computational demands of
implementing a coupled temperature‐salinity non‐local term within ocean models may increase. This can affect
model efficiency and require adjustments in computational resources. Despite these difficulties, the extension of
the non‐local term derivation to salinity promises a more comprehensive and accurate representation of oceanic
convection.

In the near future, our research plans also entail a systematic re‐evaluation of all k–ε and kεt parameters. To
achieve this, we will follow the framework proposed byWagner et al. (2023) which employs an ensemble of LES
in all oceanic convective regime (Legay et al., 2024; Moeng & Sullivan, 1994), in conjunction with Bayesian
methods. Using this method, we will identify the key parameters in the closure and, more importantly, obtain an
estimate and propose an error bar for all these parameters.

Appendix A: Part of Γkεt Implicitly Present in the k–ε Model
For the sake of clarity, we recall here two expressions of the kεt model that will be discussed in this appendix

w′θ′ = − fh
k2

ε ∂zΘ + f ∗
h
k
εβ3 θ

′2, (A1)

Γkεt = f ∗
h
k
εβ3 θ

′2. (A2)

In Equation A2, part of Γkεt is associated with the equilibrium value of θ′2. Indeed, in a k–ε model, we have (cf.,
Equation F1)

θ′2 = − cT
k
εw
′θ′ ∂zΘ, (A3)

which is the steady‐state solution of the equilibrium between the production and the dissipation terms. By
construction, if we use this equilibrium in the kεtmodel, then we obtain the k–εmodel. If we insert Equation A3 in

Equation A1, we indeed get a temperature flux w′θ′ which is entirely downgradient and, by identification, we
obtain a relationship between the stability function of k–ε and the stability functions of kεt which is the following

{fh}k− ε =
{fh}kεt

1 + cTαN {f ∗
h }kεt

. (A4)

This is interesting because it highlights the fact that, within the non‐local term, the part of θ′2 associated with its
equilibrium value results in a downgradient contribution. In the kεt model, we obtain (cf., Equation 22)

θ′2 = − cT
k
εw
′θ′ ∂zΘ +

cT
2
k
ε(Dθ′2

− ∂tθ′2). (A5)

Inserting Equation A5 into Equation A1 gives

w′θ′ = − {fh}k− ε
k2

ε ∂zΘ +
{f ∗
h }kεt

1 + cTαN {f ∗
h }kεt

cT
2
k2

ε2β3 (Dθ′2
− ∂tθ′2), (A6)

and

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004243

LEGAY ET AL. 17 of 26

 19422466, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004243 by T
est, W

iley O
nline L

ibrary on [16/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Γ̂kεt =
{f ∗
h }kεt

1 + cTαN {f ∗
h }kεt

cT
2
k2

ε2β3 (Dθ′2
− ∂tθ′2) (A7)

is hence the effective non‐local contribution of kεt in comparison to the k–εmodel. It is possible to implement the
kεt model with Equation A6 rather than Equation A1. However, such an implementation has proved to need very

low time steps to be stable (in the order of just a few seconds). This is mainly because the term (D
θ′2
− ∂tθ′2)

cannot be calculated explicitly and must be evaluated after solving the θ′2 equation. Quantities coming from
different time steps are then mixed and identifying a clear path from time step n to time step n + 1 is not easy.

Keeping definition (Equation A2) is also an intentional choice because this expression exhibits some properties
that are lost in Equation A7. Particularly, Equation A2 gives a Γkεt that is positive, that is, a turbulent temperature
flux that follows the buoyancy effect (cold going down and hot going up) and hence close to what can be expected
from a coherent plume that is subjected to the buoyancy force. Also, Γkεt is zero at the surface and at the base of the
mixed layer, it therefore represents a redistribution of heat in the mixed layer and this again acts as a coherent
plume. Thus, in practice, we keep an implementation based on Equation A1 which is described in Section 2.4 and
the formula (Equation A7) will be used for comparing kεt to k–ε. Particularly, when Γ̂kεt is close to zero, the kεt
model has no sensible impact in comparison to the k–ε model. Profiles of Γ̂kεt for the FC and the W test cases are
presented in Appendix B.

Equations A2 and A7 are two different splits downgradient/non‐local of the turbulent temperature flux. These
splits are arbitrary since both Γkεt and Γ̂kεt still contain dependencies on αn, which is directly related to ∂zΘ. We
conclude that there is no unique way of defining the non‐local term.

Appendix B: Diagnostics of Γ̂kεt for FC and W

Based on Appendix A, we know that the part of Γkεt which is associated with the non‐equilibrium value of θ′2 is
given by

Γ̂kεt =
{f ∗
h }kεt

1 + cTαN {f ∗
h }kεt

cT
2
k2

ε2β3 (Dθ′2
− ∂tθ′2), (B1)

and the associated downgradient contribution to w′θ′ is

D̂Gkεt = − {fh}k− ε
k2

ε ∂zΘ. (B2)

In Figure B1, we evaluate Γ̂kεt and D̂Gkεt for both the FC and the W test cases at the end of the simulations, and we
compare them to Γkεt and DGkεt = − {fh}kεt

k2
ε ∂zΘ. For FC, an important proportion of Γkεt is explained by Γ̂kεt , and

so by the non‐equilibrium values of θ′2. This is particularly the case in the inner part of the mixed layer
(− 0.7≥ z/ hm ≥ − 0.3) . This confirms what is observed in Figure 3e, that is, it is mostly in the inner part of the
mixed layer that the temperature variance of kεt differs from its equilibrium value in k–ε. For W, Γ̂kεt is close to
zero and kεt thus brings no difference in comparison to a k–ε model (see again Figure 4). The temperature

variance is close to its equilibrium value and the turbulent temperature flux w′θ′ is entirely explained by the
downgradient term D̂Gkεt .
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Appendix C: Results of the k–ε–θ′2–w′2 Model

We detail here the results of the k–ε–θ′2–w′2 model which is a possible extension of the kεt model where the non‐
equilibrium is also considered for the w′2 equation. By doing that, Equations 6 and 7 now form a system of eight

equations with eight unknowns: (u′2, v′2, u′v′, u′w′, v′w′, u′θ′, v′θ′, w′θ′). We solved this system with Math-
ematica and we obtained the following expressions:

u′w′ = − fm
k2

ε ∂zU, (C1)

v′w′ = − fm
k2

ε ∂zV, (C2)

w′θ′ = − fh
k2

ε ∂zΘ + f ∗
h
k
εβ3 θ

′2, (C3)

which have the same shape as the ones found for the kεt model. Particularly, even if w′2 is not in equilibrium
anymore, the velocity fluxes u′w′ and v′w′ are still fully downgradient. The expressions of the stability functions
fm, fh and f ∗

h are:

fm =
n0 + n2αM + n3αT + n4αW + n5αWαN + n6αWαM

d0 + d1αN + d2αM + d3αNαM + d5α2M
, (C4)

fh =
n2TαM + n4TαW + n5TαWαN + n6TαWαM
d0 + d1αN + d2αM + d3αNαM + d5α2M

, (C5)

f ∗
h =

n∗
0T + n∗

1T αN + n∗
2T αM

d0 + d1αN + d2αM + d3αNαM + d5α2M
, (C6)

with αN = k2
ε2N

2, αM = k2
ε2M

2, αT = k
ε2β

2
3 θ

′2, and αW = 1
k w′2. Coefficients ni, niT and di depends on the co-

efficients ci and ciT ; the expressions are given hereafter. Taking the values of the ci and ciT given in Table 1, the
stability functions are approximately as follows

Figure B1. Decomposition of the turbulent temperature flux into w′θ′ = DGkεt + Γkεt andw′θ′ = D̂Gkεt + Γ̂kεt with Γ̂kεt the
part of Γkεt which is associated with the non‐equilibrium value of θ′2. (a) For the free convection test case at the end of the
7 days of simulation. (b) For the W test case at the end of the 30 hr of simulation.
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fm =
0.04693 − 0.00005303αM + 0.001996αT + 0.0896αW − 0.002994αWαN − 0.0001012αWαM

1 + 0.03361αN + 0.01342αM + 0.00006267αNαM − 0.00001644α2M
, (C7)

fh =
0.0002651αM + 0.1681αW + 0.005649αWαN + 0.002952αWαM

1 + 0.03361αN + 0.01342αM + 0.00006267αNαM − 0.00001644α2M
, (C8)

f ∗
h =

0.1120 + 0.003766αN + 0.001631αM
1 + 0.03361αN + 0.01342αM + 0.00006267αNαM − 0.00001644α2M

. (C9)

Here are the expressions of the coefficients ni, niT , and di:

n0 =
3c4 − 2c5

6c1
, n2 =

− c4T (3c4 − 2c5) (2 − 2c2T − c4T)
24c1c21T

,

n3 =
(1 − c3) (1 − c3T) (2c1Tc5 + 3c1 (2 − 2c2T − c4T))

6c21c21T
, n4 =

2 − 2c2 + c5
2c1

,

n5 =
− (1 − c3) (2c1Tc5 + 3c1 (2 − 2c2T − c4T))

6c21c21T
, n6 =

− c4T (2 − 2c2 + c5) (2 − 2c2T − c4T)
8c1c21T

,

n2T =
c4T (3c4 − 2c5)

12c1c21T
, n4T =

1
c1T

, n5T =
1 − c3
c1c21T

,

n6T =
3c1c4T (2 − 2c2 + c5) + 2c5c1T (4 − 4c2 + 3c5)

12c21c21T
,

n∗
0T =

1 − c3T
c1T

, n∗
1T =

(1 − c3) (1 − c3T)
c1c21T

, n∗
2T =

c5 (1 − c3T) (4 − 4c2 + 3c5)
6c21c1T

,

d0 = 1, d1 =
1 − c3
c1c1T

, d2 =
c5 (4 − 4c2 + 3c5)

6c21
−
c4T (2 − 2c2T − c4T)

4c21T
,

d3 =
c5c4T (1 − c3)

6c21c21T
, d5 =

− c5c4T (4 − 4c2 + 3c5) (2 − 2c2T − c4T)
24c21c21T

. (C10)

Appendix D: Coefficients in the Second‐Order Moment Equations
Coefficients c1,c2,c3,c4,c5,c1T ,c2T ,c3T ,c4T ,cT used in Equations 3–5 are linked to the coefficients introduced by
Canuto et al. (2001) through the following formulas:

c1 = 1/λ, c2 = α1, c3 = 1 − β5, c4 = 4/3 α1 − 4/5, c5 = α1 − α2,

c1T = λ5/2, c2T = 3/4 α3, c3T = γ1, c4T = α3/2, cT = 2 λ8/ (1 − γ1).
(D1)

Appendix E: Expressions of the Main Tensors Under the Boundary Layer
Approximation
After applying the boundary layer approximation, the tensors Pij,Bij,Sij,Vij,Zij used in Equations 3–5 simplify to

Pij =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− 2 ∂zU u′w′ − ∂zU v′w′ − ∂zV u′w′ − ∂zU w′2

− ∂zU v′w′ − ∂zV u′w′ − 2 ∂zV v′w′ − ∂zV w′2

− ∂zU w′2 − ∂zV w′2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (E1)
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Bij =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 β3 u′θ′

0 0 β3 v′θ′

β3 u′θ′ β3 v′θ′ 2 β3 w′θ′

⎞

⎟
⎟
⎟
⎟
⎠
, (E2)

Sij =
1
2

⎛

⎜
⎜
⎜
⎜
⎝

0 0 ∂zU

0 0 ∂zV

∂zU ∂zV 0

⎞

⎟
⎟
⎟
⎟
⎠
, (E3)

Vij =
1
2

⎛

⎜
⎜
⎜
⎜
⎝

0 0 ∂zU

0 0 ∂zV

− ∂zU − ∂zV 0

⎞

⎟
⎟
⎟
⎟
⎠
, (E4)

Zij =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u′w′ ∂zU
1
2
v′w′ ∂zU +

1
2
u′w′ ∂zV

1
2
∂zU (w′2 − u′2) −

1
2
∂zV u′v′

1
2
v′w′ ∂zU +

1
2
u′w′ ∂zV v′w′ ∂zV

1
2
∂zV (w′2 − v′2) −

1
2
∂zU u′v′

1
2
∂zU (w′2 − u′2) −

1
2
∂zV u′v′

1
2
∂zV (w′2 − v′2) −

1
2
∂zU u′v′ − u′w′ ∂zU − v′w′ ∂zV

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(E5)

Appendix F: The Algebraic System of 10 Equations of the GLS Formalism
For clarity, we give here the explicit writing of the 10 equations presented in Equations 6–8 and that are the basis
of the GLS formalism:

0 = − c1
ε
k
(u′2 −

2
3
k) + (1 − c2)(−

4
3
u′w′ ∂zU +

2
3
v′w′ ∂zV) −

2
3
(1 − c3)β3 w′θ′ − c5u′w′ ∂zU

0 = − c1
ε
k
(v′2 −

2
3
k) + (1 − c2)(−

4
3
v′w′ ∂zV +

2
3
u′w′ ∂zU) −

2
3
(1 − c3)β3 w′θ′ − c5v′w′ ∂zV

0 = − c1
ε
k
(w′2 −

2
3
k) + (

2
3
−
2
3
c2 + c5) (u′w′ ∂zU + v′w′ ∂zV) +

4
3
(1 − c3)β3 w′θ′

0 = − c1
ε
k
u′v′ − (1 − c2) ( v′w′ ∂zU + u′w′ ∂zV) −

1
2
c5 ( v′w′ ∂zU + u′w′ ∂zV)

0 = − c1
ε
k
u′w′ − (1 − c2)w′2 ∂zU + (1 − c3)β3 u′θ′ −

1
2
c4k ∂zU −

1
2
c5(w′2 ∂zU − u′2 ∂zU − u′v′ ∂zV)

0 = − c1
ε
k
v′w′ − (1 − c2)w′2 ∂zV + (1 − c3)β3 v′θ′ −

1
2
c4k ∂zV −

1
2
c5(w′2 ∂zV − v′2 ∂zV − u′v′ ∂zU)

0 = − c1T
ε
k
u′θ′ − (1 − c2T −

1
2
c4T) w′θ′ ∂zU − u′w′ ∂zΘ

0 = − c1T
ε
k
v′θ′ − (1 − c2T −

1
2
c4T) w′θ′ ∂zV − v′w′ ∂zΘ

0 = − c1T
ε
k
w′θ′ − w′2 ∂zΘ + (1 − c3T)β3 θ′2 −

1
2
c4T (u′θ′ ∂zU + v′θ′ ∂zV)

0 = − 2 w′θ′ ∂zΘ −
2
cT
ε
k
θ′2

(F1)
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Appendix G: Coefficients of the Stability Functions for the GLS Formalism
Coefficients n0,n1,n2,n0T ,n1T ,n2T ,d0,d1,d2,d3,d4,d5 of the GLS stability functions (Equations 12 and 13) have
the following definitions:

n0 =
4 − 4c2 + 3c4

6c1
,

n1 =
c1c1TcT (1 − c3T) (4 − 4c2 + 3c4) − 2c1 (1 − c3) (2 − 2c2T − c4T) + 4c1T (1 − c3) (c4 − c5)

6c21c21T
,

n2 =
− c4T (4 − 4c2 + 3c4) (2 − 2c2T − c4T)

24c1c21T
,

n0T =
2

3c1T
, n1T =

2(1 − c3)
3c1c21T

,

n2T =
c1c4T (4 − 4c2 + 3c4) + 8c5c1T (1 − c2 + c5) − 2c4c1T (2 − 2c2 + 3c5)

12c21c21T
,

d0 = 1, d1 =
7 − 7c3 + 3c1cT (1 − c3T)

3c1c1T
,

d2 =
3c25 + 6c5 (1 − c2) + 2(1 − c2)2

3c21
−
c4T (2 − 2c2T − c4T)

4c21T
,

d3 =
c5c1T (1 − c3) (2 − 2c2 + c5)

3c31c21T

+
c1c1TcT (1 − c3T) (3c25 + 6c5 (1 − c2) + 2(1 − c2)2)

3c31c21T

+
c1 (1 − c3) (3c4T (1 − c2 + c5) − (1 − c2T) (2 − 2c2 + 3c5))

3c31c21T
,

d4 =
(1 − c3) (4 − 4c3 + 3c1cT (1 − c3T))

3c21c21T
,

d5 =
− c4T (2 − 2c2T − c4T) (3c25 + 6c5 (1 − c2) + 2(1 − c2)2)

12c21c21T
. (G1)

Taking the values of the ci and ciT given in Table 1, a numerical estimate of these expressions gives the following
stability functions

fm =
0.1067 + 0.01732αN − 0.0001205αM

1 + 0.2398αN + 0.02872αM + 0.005154αNαM + 0.006930α2N − 0.00003372α2M
, (G2)

fh =
0.1120 + 0.003766αN + 0.0008871αM

1 + 0.2398αN + 0.02872αM + 0.005154αNαM + 0.006930α2N − 0.00003372α2M
. (G3)

Appendix H: The Algebraic System of Nine Equations of the kεt Parameterization
For clarity, we give here the explicit writing of the nine equations presented in Equations 6 and 7 and that are the
basis of the kεt parameterization:
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0 = − c1
ε
k
(u′2 −

2
3
k) + (1 − c2)(−

4
3
u′w′ ∂zU +

2
3
v′w′ ∂zV) −

2
3
(1 − c3)β3 w′θ′ − c5u′w′ ∂zU

0 = − c1
ε
k
(v′2 −

2
3
k) + (1 − c2)(−

4
3
v′w′ ∂zV +

2
3
u′w′ ∂zU) −

2
3
(1 − c3)β3 w′θ′ − c5v′w′ ∂zV

0 = − c1
ε
k
(w′2 −

2
3
k) + (

2
3
−
2
3
c2 + c5) (u′w′ ∂zU + v′w′ ∂zV) +

4
3
(1 − c3)β3 w′θ′

0 = − c1
ε
k
u′v′ − (1 − c2) ( v′w′ ∂zU + u′w′ ∂zV) −

1
2
c5 ( v′w′ ∂zU + u′w′ ∂zV)

0 = − c1
ε
k
u′w′ − (1 − c2)w′2 ∂zU + (1 − c3)β3 u′θ′ −

1
2
c4k ∂zU −

1
2
c5(w′2 ∂zU − u′2 ∂zU − u′v′ ∂zV)

0 = − c1
ε
k
v′w′ − (1 − c2)w′2 ∂zV + (1 − c3)β3 v′θ′ −

1
2
c4k ∂zV −

1
2
c5(w′2 ∂zV − v′2 ∂zV − u′v′ ∂zU)

0 = − c1T
ε
k
u′θ′ − (1 − c2T −

1
2
c4T) w′θ′ ∂zU − u′w′ ∂zΘ

0 = − c1T
ε
k
v′θ′ − (1 − c2T −

1
2
c4T) w′θ′ ∂zV − v′w′ ∂zΘ

0 = − c1T
ε
k
w′θ′ − w′2 ∂zΘ + (1 − c3T)β3 θ′2 −

1
2
c4T (u′θ′ ∂zU + v′θ′ ∂zV)

(H1)

Appendix I: Coefficients of the Stability Functions of the kεt Parameterization
We give hereafter the expressions of the coefficients n0, n1, n2, n0T , n1T , n2T , n∗

0T , n∗
1T , n∗

2T , d0, d1, d2, d3, d4, d5 of
the kεt stability functions (Equations 19–21). We point out that the expressions of the coefficient n1T and all the
coefficients not multiplying αn (i.e., n0, n2, n0T , n2T , d0, d1 and d5) stay unchanged compared to the GLS ones
(given in Appendix G).

n0 =
4 − 4c2 + 3c4

6c1
, n1 =

(1 − c3) (2c1T (c4 − c5) − c1 (2 − 2c2T − c4T))
3c21c21T

,

n2 =
− c4T (4 − 4c2 + 3c4) (2 − 2c2T − c4T)

24c1c21T
,

n3 =
(1 − c3) (1 − c3T) (2c1T (4 − 4c2 + 3c5) + 3c1 (2 − 2c2T − c4T))

6c21c21T
,

n0T =
2

3c1T
, n1T =

2(1 − c3)
3c1c21T

,

n2T =
c1c4T (4 − 4c2 + 3c4) + 8c5c1T (1 − c2 + c5) − 2c4c1T (2 − 2c2 + 3c5)

12c21c21T
,

n∗
0T =

1 − c3T
c1T

, n∗
1T =

(1 − c3) (1 − c3T)
c1c21T

,

n∗
2T =

(1 − c3T) (3c25 + 6c5 (1 − c2) + 2(1 − c2)2)
3c21c1T

,

d0 = 1, d1 =
7(1 − c3)
3c1c1T

, d2 =
3c25 + 6c5 (1 − c2) + 2(1 − c2)2

3c21
−
c4T (2 − 2c2T − c4T)

4c21T
,

d3 =
(1 − c3) (3c1c4T (1 − c2 + c5) + c5c1T (2 − 2c2 + c5) − c1 (1 − c2T) (2 − 2c2 + 3c5))

3c31c21T
,
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d4 =
4(1 − c3)2

3c21c21T
, d5 =

− c4T (2 − 2c2T − c4T) (3c25 + 6c5 (1 − c2) + 2(1 − c2)2)
12c21c21T

. (I1)

Taking the values of the ci and ciT given in Table 1, a numerical estimate of these expressions gives the following
stability functions

fm =
0.1067 + 0.0001072αN − 0.0001205αM + 0.004673αT

1 + 0.07843αN + 0.02872αM + 0.0003389αNαM + 0.001506α2N − 0.00003372α2M
, (I2)

fh =
0.1120 + 0.003766αN + 0.0008871αM

1 + 0.07843αN + 0.02872αM + 0.0003389αNαM + 0.001506α2N − 0.00003372α2M
, (I3)

f ∗
h =

0.1120 + 0.003766αN + 0.003344αM
1 + 0.07843αN + 0.02872αM + 0.0003389αNαM + 0.001506α2N − 0.00003372α2M

. (I4)

Data Availability Statement
All the codes used for the study are published onGitHub (Legay, 2024, https://github.com/legaya/James2024‐ket/).
The repository contains the three Jupyter Notebooks used for performing the 1D simulations and all the analyses,
the version of the “oceanmixedlayers” package we used (Reichl et al., 2022, https://github.com/breichl/ocean-
mixedlayers), the 1D model described in Section 2.4 as Fortran Modules, the Fortran codes needed for generating
these modules, the files needed to perform the LES, and the LES results as netCDF files.
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