
1.  Introduction
Ocean energy balance have received considerable recent attention, motivated in part by interest in ocean 
mixing. As discussed by Wunsch and Ferrari (2004) and Ferrari and Wunsch (2009), maintenance of ocean 
stratification requires mixing that, in turn, requires energy. The rates of energy consumption by mixing 
consistent with the observed ocean stratification are thought to be 1–2 Terawatts (TW; 1  TW  =  1012  W, 
St. Laurent & Simmons, 2006). High-frequency winds and tides can provide such power (e.g., Ferrari & 
Wunsch, 2009), and both are broadly accepted as being principally involved in ocean mixing.

Low-frequency winds globally also provide energy (≤1 TW) to the ocean (Wunsch, 1998; Zhai et al., 2012), 
primarily driving large-scale horizontal circulations in the process. The input is divided geographically be-
tween the Southern Ocean, recipient of about 60% of the total, the equatorial Pacific and the subtropical 
gyres. A prevailing idea is that the large-scale circulation loses its energy to the mesoscale by means of geo-
strophic instabilities, with the associated flux to the mesoscale being roughly 1 TW (Ferrari & Wunsch, 2009; 
Wunsch & Ferrari, 2004). The mean flow equilibration then consists of wind energy input balanced by loss 
to the mesoscale. The primary focus of this study is the subtropical gyres component of the overall energy 
story. Specifically, we examine how and where the wind-driven subtropical gyres achieve their equilibrium.

The role of the mesoscale in circulation dynamics has been a focus of numerical simulations since the 
studies of Holland and Lin (1975), Semtner and Mintz (1977), Robinson et al. (1977), and Holland (1978). 
Working in few layer, primitive equation and quasigeostrophic (QG) environments, these early studies relat-
ed the appearance of eddies to large-scale flow instabilities, and documented their role in developing deep 
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Plain Language Summary  Atmospheric winds provide energy to the ocean general 
circulation through surface stress, forcing the so-called wind-driven oceanic gyres. Although the primary 
energy sink of this large-scale circulation is usually recognized to be energy transfers toward smaller 
scales, details remain unclear. In this paper, we argue that the ocean receives energy over the broader 
interior from the wind and recirculates that energy to the open ocean Gulf Stream, where it is lost to 
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circulation acts like a flywheel. This very inertial character of the circulation resembles a classical model 
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mean circulations. The role of eddy energy was explored in the work by Harrison and Robinson (1978), 
where the importance of the recirculation to eddy development was noted. The paper by Holland (1978) 
provides a thorough discussion of basin integrated energy budgets in a QG setting. More recently, the rich, 
detailed structure and exchange of energy between mean and eddy flows have been illustrated in primitive 
equation based North Atlantic simulations (Greatbatch et al., 2010). The paper by Zhai and Marshall (2013) 
focuses on vertical eddy pressure work in the North Atlantic, arguing that it plays a major role in balancing 
mean gyre wind forcing.

The effect of the mesoscale on the large-scale circulation has also been addressed in situ. An early examina-
tion is the classic paper by Gill et al. (1974), who used a combination of theory and observations to suggest 
that the interior westward mean flow of the North Atlantic subtropical gyre is an important site for eddy 
development. The authors argued that the net release from the mean potential energy field to eddies via 
baroclinic instability appeared to be adequate to balance the net input of energy from the mean wind. These 
estimates were based on local, linearized QG theory.

The present study departs from past efforts by a combination of theoretical and numerical examination 
which seeks to identify how the subtropical wind-driven circulation obtains a leading-order energy balance. 
We first provide a short review of past efforts for coupling planetary geostrophic and QG equations leading 
the main motivations for the present study (Section  2.) A classical multiple-scale analysis of the ocean 
interior is then applied (Section 3 and Appendix A), and argues the local effects of eddies are relatively 
weak. Augmenting the analysis with an anisotropic western boundary layer suggests the western boundary 
current, along the ocean boundary, is also only weakly effected by the mesoscale. This leaves the open ocean 
extension of the Gulf Stream as primary location where the mean flow drains energy to the mesoscale. A 
North Atlantic numerical simulation is analyzed in Section 4 from the perspective of the theory and found 
to support it. It is in the desire to interpret large-scale circulation theory in terms of variable regional energy 
exchange with the mesoscale that this paper differs from previous examination of regional Gulf Stream 
energy budgets. A more classical, recent quantification of regional exchanges and connections to Lorenz en-
ergy cycles can be found in the study of Kang and Curchitser (2015). The paper concludes with a Summary 
and a discussion of potential future directions (Section 5).

2.  Background
Pedlosky (1984, P84 hereafter), in an insightful contribution, attempted a synthesis of the two primary mod-
els of the wind-driven ocean general circulation, that is, the ventilated thermocline (Luyten et al., 1983), 
framed in the “Planetary Geostrophic” (PG hereafter) equations, and homogenization theory (Rhines & 
Young, 1982), which employs the “QG” equations. The scaling behind PG implies it is meant to describe 
basin scale motions (thousands of kilometers), while the QG equation applies to smaller scale motions, typi-
cally of the order of the Rossby deformation radius (several tens of kilometers). P84 performed the synthesis 
using a multiple-scale approach and found that the QG field was strongly affected at leading order by the 
PG field, but that no comparable feedback onto the PG field from the QG field occurred (see also Grooms 
et al., 2011). Only at higher order it is possible to locate feedbacks from the QG field onto the PG field.

The full implications of this result have not received much attention, particularly that the forced PG field, in 
its lack of interaction with the QG eddy field, does not have an obvious energy sink and thus suffers from an 
unbalanced energy budget. While it is possible that one or both of the ventilated thermocline or QG theory 
are flawed, both have a considerable literature behind them supporting their quantitative and qualitative 
utility.

A different possibility explored here is that the multiple-scale QG and ventilated thermocline theory is cor-
rect, but incomplete. This idea was first explored in Grooms et al. (2011) who elaborated on P84 by allowing 
for anisotropy. This extends P84 by recognizing that QG and PG are fundamentally zonally and meridi-
onally isotropic in their scaling assumptions. In contrast, features like the Gulf Stream and the Kuroshio 
are not well described within either framework. Both are arguably features midway between PG and QG, 
characterized by the deformation radius in the cross-jet direction and the planetary scale in the along-jet 
direction. Grooms et al. (2011) show how involving anisotropy leads to equations where planetary scale and 
deformation radius scale motions can interact at leading order.
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As a consequence, jets might be regions in which large-scale energy is extracted from the flow. Our present 
analysis supports this idea; however, it does so by emphasizing the role of the separated jet, and not the 
western intensified flow along the coast. This is implicit in some previous work, for example, the maps of 
vertical pressure work in Zhai and Marshall (2013), the potential vorticity study of Deremble et al. (2014), 
and the momentum budgets proposed in the studies by Hughes and de Cuevas  (2001) and Schoonover 
et al. (2016). We will capitalize on these results when developing an anisotropic boundary layer model to ap-
pend to the ventilated thermocline interior. We depart from Grooms et al. (2011) by arguing that the coastal 
components of western boundary layers are only weakly eddying and focus on their open ocean extensions. 
These regions lie outside of both QG and PG regimes, although they involve mesoscale flow at leading order. 
It also emerges, from a theoretical point of view, that the separated jet appears as the most important region 
where the mesoscale grows at the expense of the mean state.

3.  General Circulation Structure and Energy
We develop here a theoretical framework later analyzed in Section 4 by the means of quantitative analysis 
of the flow of energy in a North Atlantic simulation. Specifically, the circulation is divided into subregions, 
each possessing a distinct dynamical character. The leading-order statements of energy balance in each re-
gion reflect the regional dynamics, which in turn provides a roadmap for examining the numerical results.

3.1.  Regional Dynamics

As in P84, we analyze the hydrostatic, primitive equations of motion via a multiple-scales approach capital-
izing on the space and time scale separation between PG and QG dynamics. The analysis itself is somewhat 
lengthy; we therefore present the details in Appendix A and quote the primary results here.

The first result is that the ocean interior is governed by the well-known theory of the ventilated thermo-
cline, that is, the flow is PG, wind-forced and conservative of large-scale potential vorticity whose structure 
is set at outcrops. What the analysis adds to the classical demonstration of Luyten et al. (1983) is that the 
ventilated thermocline sets the environment housing a QG eddy field. In contrast, the QG field does not 
feed back on the ventilated thermocline. This is a result first seen in P84, and subsequently in Grooms 
et al. (2011), and so is not new, per se. What is new here is our interpretation of this result, which is that the 
ventilated thermocline is not energetically closed, that is, the flow is forced but not damped. One must look 
elsewhere to determine how the circulation equilibrates.

An obvious location to expect energy loss is the western boundary layer, as it plays that role in classical 
general circulation theories. We probe this possibility through allowing for anisotropy in the analysis, fol-
lowing an approach first introduced in Grooms et al. (2011). Our approach and theirs differ in detail, and 
end up with different boundary layer structures as encapsulated in reduced equation sets. We argue the 
coastal Gulf Stream, constrained as it is by topography, is essentially an inertial boundary layer. It accepts 
a mass influx from the interior ventilated thermocline, and then simply redirects the flux along the coast 
to the point of separation. The principle time scales of the boundary jet are set by the interior, implying the 
mean flow does not lose energy to the rapid mesoscale. This differs from the study by Grooms et al. (2011) 
who invoked a Gent-McWilliams parameterization in the boundary layer to model mean flow to mesoscale 
transfers. Thus, we conclude that the coastal Gulf Stream does not act as a sink of general circulation energy 
and that energetic equilibration of the circulation occurs elsewhere.

Beyond the coastal Gulf Stream lies the separated jet region, which consists of a jet-like coherent flow ex-
tending a few thousand kilometers into the interior. We argue this region cannot be described at leading 
order by a reduced set of equations, requiring instead the full, primitive equations for its description. It is 
only in this area that the mean circulation can transfer energy to the mesoscale at rates resulting in ener-
getic equilibration. The need for full, primitive equation dynamics underscores that at least quantitatively, 
equilibration is poorly described by QG dynamics.
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3.2.  Energy Considerations

The multiple-scale analysis in Appendix A breaks the circulation into the ventilated thermocline interior, 
the coastally confined boundary current and the open ocean separated jet, and ascribes different roles to 
each. Because the large-scale flows in these regions are theoretically governed by different leading-order dy-
namics, their energy expressions will differ. In the next section, we test this view of mean circulation energy 
in a numerical model. To align the upcoming numerical results with the theoretical results, we identify the 
time-mean, spatially averaged flow of the numerical model with the large-scale circulation described by the 
theory. The reasoning behind this is given in Appendix B.

We work primarily with kinetic energy statements of the time averaged mean flow. Representing the time 
averaging by ( )

t
, fluctuations about the mean by primes (⋅)′ and vector multiplying the time averaged mo-

mentum equations by the time averaged velocities, the equation governing  2 2( ) / 2 ( ) / 2ˆ t tK u v  becomes
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represents dissipation.

Manipulations involving the hydrostatic balance (see Appendix C) lead eventually to
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where h is dynamic enthalpy (Young, 2010)
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w b  denotes the vertical buoyancy flux associated with the eddies. A full derivation of 3 appears in 
Appendix C.

The left hand side of 3, being a divergence, becomes a statement about boundary fluxes when integrated 
over some volume. The right hand side, in addition to dissipation, describes processes by which the mean 
and eddy fields can exchange energy within the volume of integration. In the following, we will often refer 
to the total eddy exchange as MEC = BMEC + CMEC, with
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The quantity BMEC (Barotropic Mean to Eddy Conversion) is associated with eddy momentum flux diver-
gence as a force on the mean momentum and CMEC (baroClinic Mean to Eddy Conversion) represents eddy 
conversions of potential energy to mean kinetic energy, often associated with baroclinic instability.

Forming a kinetic energy equation for the eddy field by subtracting the mean horizontal momentum 
equations from the full momentum equations, vector multiplying the result by perturbation velocity and 
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averaging shows that eddy kinetic energy (defined by    2 20.5( )
tt

K u v ) receives energy inside a domain 
via −MEC, supporting the interpretation of eddy-to-mean flow exchanges.

3.3.  Regional Energy Balances

The three general circulation regions suggested by our theory are the ventilated thermocline interior, the 
coastal jet and the separated jet. The interior is primarily geostrophic and forced by the wind. Upon a vol-
ume integration, the leading order energy statement there becomes (see Appendix B)

 S
t t t

A
t tp h dS dAu n u o( ) ( ) ,   0 

INTERIOR
� (6)

where interior viscous dissipation has been ignored, τo is the surface wind-stress, tu  is the three-dimension-
al velocity, (0)tu  is the surface velocity, and A is the ocean surface part of the surface S bounding the volume 
V. Equivalently, mean potential energy entering the domain V is modified by the wind-stress at the surface, 
so that the total exiting the domain differs by the net wind work.

The coastal jet region is somewhat richer, with geostrophy for the along coast flow and the full, steady mo-
mentum balance for the cross-shore flow. The resulting energy equation, when volume integrated over the 
coastal region, is
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(see Appendix B for a derivation). The interpretation of 7 is quite straight-forward: down or up pressure 
gradient flow will increase or decrease the kinetic energy flux.

We do not have a reduced set of equations to describe the open ocean jet, expecting instead that the full 
primitive equations are required, and therefore that 3 applies. Ignoring lateral viscous kinetic energy flux at 
the volume edge, a volume integration of 3 yields

              
MEC ,

SEPARATED JET

ˆ t tt t t t
S A o V VK p h dS dS dV dVu u n u τ � (8)

where we do not a priori expect any of the terms, aside from dissipation, to be small. Equation 8 argues the 
separated jet as a region where mean energy flux can be affected by exchange with the mesoscale because 
it is the only leading-order energy statement where the MEC term appears. The requirement of the full 
primitive equations to describe this area does suggest that the transfers will be at least quantitatively differ-
ent than those described by QG dynamics, namely the instabilities will be of a generalized barotropic and 
baroclinic instability nature, with O(1) Rossby numbers.

3.4.  Numerical Considerations

The various contributions to 8 will be evaluated from a numerical model in the next section. Our method 
for diagnosing the kinetic energy budget to machine precision is outlined in Appendix D. We will refer to 
the various terms using the shorthand listed in Table 1, these being all the terms of the mean kinetic energy 
equation, as they appear in 8.

The calculation of BMEC requires some discussion. To insure its computation to machine precision, we 
initialize our model configuration, described in the next section, using time averaged fields and run the 
model for a few time steps. The momentum equations develop a time tendency, since the mean fields are 
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not steady solutions of the equations. Referring to 1, the kinetic energy change associated with these mo-

mentum tendencies corresponds to the quantity  
 


BMEC

tt
I i I

i
u u u

x
.

Finally, we are interested in the net mean wind forcing which, literally speaking, depends on the product of 
mean surface velocity and mean surface wind-stress. However, some of that energy input is locally dissipat-
ed in the surface mixed layer, and is unavailable to the general circulation. We show in Figure 1 a vertically 
integrated viscous energy flux profile horizontally integrated over the North Atlantic subtropical gyre region 
studied in this paper. The displayed quantity, V(z), is defined as
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where lateral viscous fluxes have been ignored and τ = νuz. The topmost 
value (at the base of the first grid cell) in Figure 1 is the total wind work 
adjusted for dissipation and flux through the bottom of the grid cell. Mov-
ing downward, a rapid increase in V(z) is seen, which is associated with 
decreasing local mixed layer dissipation and flux through the deeper grid 
cell face. The profile at depths greater than roughly 25 m settles to a slow-
ly evolving structure, consistent with the profile being out of the intense 
surface dissipation zone. We take the energy flux at a depth of roughly 
25 m, computed according to 9, as indicative of the net wind input to the 
large-scale circulation, and refer to it in the discussion below as “wind 
work” (WW). For the profile in Figure 1, this is a value of roughly 41 GW. 
Further, we will write KEDISS = WW + KEDA
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where − zo is 1,000 m for reasons to be discussed shortly.
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Acronym Formulation Description

DKEF  ˆt
S K dSu n Divergence of kinetic energy flux

DPW  t t
S p dSu n Divergence of pressure work

DPEF
 

t
S h dSu n Divergence of potential energy flux

BMEC  
 



tt
V I i I

i
u u u dV

x
Mean-to-eddy conversion associated with eddy 

momentum flux divergence

CMEC   
t

V w b dV Mean-to-eddy conversion associated with conversions 
of potential energy to mean kinetic energy

KEDISS       ˆ( )V K dV Kinetic energy dissipation

KEDISS = WW + KEDA       0m
25m ( )K̂ dV + 

     25m
1,000m ( )K̂ dV Wind work

Kinetic energy dissipation

Note. The lower two lines define the respective contributions of surface wind work (WW) and interior dissipation (KEDA) to total KEDISS.

Table 1 
Summary of the Mean Kinetic Energy Budget Terms of 8, and Their Associated Abbreviations Used in the Text

Figure 1.  A net viscous energy flux profile integrated over the region of 
the subtropical North Atlantic gyre. The rapid increase moving downward 
away from the surface indicates the region of extreme mixed layer 
dissipation. At about 25 m, the profile settles to a slowly varying value of 
roughly 41 GW, which we take as the network from the wind available to 
the wind-driven circulation.
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4.  Numerical Results
4.1.  Model Description

We analyze a regional configuration of the Massachusetts Institute of 
Technology General Circulation Model (MITgcm, Marshall et al., 1997). 
The horizontal resolution is 1/12° and 46 layers are used in the vertical, 
with vertical spacing ranging from 6 m at the surface to 250 m at depth. A 
resolution of 1/12° is generally recognized as “eddy resolving,” although 
the eddy activity is undoubtedly underestimated (Chassignet & Xu, 2017). 
Boundary conditions at 55°N and 20°S and at the Strait of Gibraltar are ex-
tracted from the 1/12° global Drakkar run ORAC12.L46-MJM88 (Molines 
et al., 2014; Serazin et al., 2015). Topography comes from the ORCA12.
L46 configuration, which is a combination of ETOPO1 for the deep ocean 
and GEBCO_08 for shallow areas (Molines et al., 2014), a choice which 
also provided consistency with the boundary conditions. The model uses 
the modified UNESCO equation of state (Jackett & McDougall, 1995).

Tracer and momentum equations employed both Laplacian and bihar-
monic operators with coefficients of 20 m2 s−1 and −1010 m4 s−1, respec-

tively. At the surface, the ocean model was coupled to the atmospheric boundary layer package, CheapAML 
(Deremble et al., 2013), which computes wind-stress, latent flux, and sensible flux according to the COARE3 
(Fairall et al., 2003) flux formula, as well as upwelled long-wave radiation. The Drakkar forcing data set, 
version 4.4 (DFS4.4) was used to produce atmospheric and radiative conditions, and precipitation from 
DFS5.3 was used due to higher time resolution. All atmospheric variables are strongly restored toward the 
prescribed DFS4.4 values over land. Surface forcing was applied every 6 h and open boundary conditions 
every 5 days.

Initial conditions were obtained after a 6 year spin-up, consisting of a 5-year long run (1958–1962) under re-
alistic forcing, with initial conditions derived from the oceanic state of the ORCA12.L46-MJM88 configura-
tion on January 1, 1958, followed by an additional 1-year long simulation under 1963 forcing with perturbed 
initial conditions. This additional year of simulation was used to produce an ensemble (Jamet et al., 2019), 
one realization of which is used in this work. From the subsequent January 1st state, the configuration was 
integrated for 50 years (1963–2012), and this study focuses on a 26-year long segment (1970–1995) of this 
simulation.

Figure 2 shows the sea surface height for the North Atlantic sector. The Gulf Stream appears along the U.S. 
eastern coast and its open ocean extension reaches out to a longitude of roughly 50°W. There is an SSH 
imprint of the Loop Current in the Gulf of Mexico.

We have segmented the ocean into several sectors, shown in Figure 2, in which we perform our energy 
analysis. The six domains are referred to as the “North Interior” (box 1), the “South Interior” (box 2), the 
“Caribbean” (box 3), the Gulf of Mexico (box 4), the “coastal Gulf Stream” (box 5) and the “Separated Jet” 
(box 6). Boxes (1)–(3) capture the main body of the interior wind-driven circulation, dominated by a slow 
southwestward drift. The Gulf of Mexico (box 4) is in some way a transition zone between the interior and 
the development of the Gulf Stream jet. The Gulf Stream transit from the tip of South Florida to Cape Hat-
teras out to a reasonable distance from the coast is in the fifth box. The last box encompasses the region of 
the identifiable open ocean Gulf Stream, out roughly to a longitude of 55°W, as indicated by surface speed.

Note that boxes 3, 4, and 5 are simple rectangles. Boxes 1, 2, and 6 are more complicated for the follow-
ing reasons. We have included the so-called Gulf Stream recirculation or Worthington Gyre (Worthing-
ton, 1976) in the separated jet box as it is a feature whose existence depends on the separated jet variability 
and is clearly not part of the Sverdrup interior, as it the remainder of box 1. Similarly, the region housing the 
North Brazil Current retroflection is cut out of box 2 as those dynamics are not described well by geostrophy.

We show in Figure 3 a north-south transect of potential density taken along the meridional dashed gray line 
in Figure 2. We observe the signature of a well-organized baroclinic gyre with an imprint of the eastward 
flowing Gulf Stream extension at about 40°N, and the bowl associated with the anticyclonic gyre south of 
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Figure 2.  1970–1995 time mean sea surface height in the North Atlantic 
sector of our model. The Gulf Stream and its open ocean extension are 
clearly visible as are other well-known Atlantic features. The meridional 
dashed gray line denotes the location of a north-south potential density 
transect appearing in the next figure. Six boxes appear which enclose the 
regions over which the energy equation is averaged.
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the Gulf Stream. The nature of the isopycnals changes at a depth of roughly 1 km, which we will take to be 
the vertical extent the wind-driven circulation. Consequently, the energy integrals discussed later extend to 
1,000 m in order to capture the wind-driven energetics.

The mean wind work distribution for the area appears in Figure 4. The values are generally positive, indi-
cating a net driving of the local circulation by the wind. We note that the open ocean wind work inside of 
box 1 is relatively small. This is due to the transition of the mean wind from being westerly to easterly in 
this latitudinal band.

In an integral sense we are motivated by a desire to understand how and where energy input to the general 
circulation from the wind exits the general circulation to the mesoscale. The form of 8 is such that MEC 
represents the mesoscale sink, and we expect the net wind energy input over the gyre to be balanced by the 
net value of MEC integrated over the gyre. In the previous section, we argued the net energy input over the 
subtropical North Atlantic (all boxes in Figure 4) is ∼41 GW. We here note that the MEC integrated over 
the same domain and to a depth of 1,000 m gives a value of roughly 43 GW which, while not identical to 
the total wind forcing, suggests this quantity brings the general circulation approximately into energetic 
equilibrium.

4.2.  Regional Kinetic Energy Considerations

Our strategy has been to consider the integrals in 8 over the boxes in Fig-
ure 2 and down to depths of 1 km to confine the energy budgets to the 
wind-driven circulation. All of the quantities in 8 have been evaluated, 
from which we infer leading-order balances. A summary of the results 
appears in Table 2. For simplicity, DPW and DPEF have been combined 
together. They appear separately in Table 2 from which it is seen that al-
ways have opposite signs and comparable magnitudes; we interpret their 
sum as the “effective” potential energy flux. Similarly, BMEC and CMEC 
are combined together since they both contribute to mean-to-eddy ener-
gy exchanges.

The evaluation of 8 in the interior boxes 1 through 4 breaks down respec-
tively as
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Figure 3.  A transect of time mean potential density σ0 = (ρ(θ, S, P = P0) − 1,000)kg m−3 for 1970–1995 through the 
North Atlantic at about 45°W (the dashed gray line in Figure 2). The Gulf Stream density structure appears at 40°N. The 
wind-driven circulation penetrates to depths of roughly 1 km.

Figure 4.  The distribution for surface Wind Work (WW, u ⋅τ) over the 
North Atlantic. The values are generally positive. The numbers are the net 
wind work in each of the boxes appearing in Figure 2. We note for later 
discussion that the central part of the gyre in box 1 is a region of minimal 
wind work, due to the reversal of the winds from primarily westerly to 
easterly.
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            
 

    
   
   
   
    

MEC

DKEF DPW DPEF WW KEDA MEC
0.0 GW 0.6 GW 5.0 GW 0.01 GW 5.6 GW

0.03 GW 19.0 GW 16.2 GW 0.06 GW 3.2 GW
4.4 GW 8.0 GW 17.5 GW 2.2 GW 2.5 GW
0.3 GW 8.1 GW 0.72 GW 3.0 GW 4.1 G

ˆ tt t t t t t
S S o o V VK p h dS dA dV dVu u u n u τ 

W

� (11)

Quite noticeable is that DKEF is very small in boxes 1, 2, and 4. It is somewhat larger in box 3 but, as shown 
later, all the divergence comes up against the Caribbean island arc near 60°W, where the circulation com-
pacts as it flows through the island topographic obstacles. In general, away from topography, kinetic energy 
is an unimportant player in the interior, which is expected from a largely geostrophic flow. In box 2, the net 
wind work is largely balanced by the effective potential energy flux divergence. Away from the archipelago, 
the same holds for the Caribbean box. A seeming exception is box 1, where potential energy divergence is 
very weak, and wind work is largely balanced by MEC. On the other hand, this is the weakest area of wind 
forcing of the subtropical gyre, with an input of 5 GW, as compared to 17.5 GW in box 3. The relative change 
in boxes 2 and 3 in wind work is matched by the changes in net potential energy flux divergence, whereas 
MEC remains comparable.

The weak values of MEC for boxes 1–3 are consistent with the predictions of ventilated thermocline theory. 
There are eddies and mesoscale events in the ocean interior, but the mean to eddy energy conversions as-
sociated with them are of secondary importance. Generally, net potential energy flux divergence balances 
wind work. MEC is also weak in the Gulf of Mexico although it is not a region of ventilated thermocline 
dynamics (wind work is negligible).

Moving to box 5, the coastal Gulf Stream, the energy contributions are
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Box name N Int S int Caribbean GOM Coastal Jet

Box number 1 2 3 4 5 6

Formulation

DKEF   ˆt
S K dSu n 0.0 0.03 4.4 0.3 19.8 −26.4

DPW   t t
S p dSu n 131.0 233.0 199 −75.6 −186.0 92.4

DPEF   
t

S h dSu n −131.6 −214.0 −191 67.5 145.0 −84.5

DPW + DPEF −0.6 19.0 8 −8.1 −41.0 7.9

WW   0|
tt

A z o dSu τ 5.0 16.2 17.5 −0.72 −0.68 3.5

KEDA    t
V dV −0.01 −0.06 −2.20 −3.0 −6.80 -0.76

BMEC  
  



t
V I i I

i
u u u dV

x
−0.2 5.3 1.7 −4.4 −11.9 −14.8

CMEC     
t

V w b dV −5.4 −2.1 −4.2 0.27 −1.4 −6.5

MEC −5.6 3.2 −2.5 −4.1 −13.3 −21.3

Note. The fourth line reflects that DPW and DPEF are always of opposite sign and of comparable magnitude, such that we interpret their sum as the “effective” 
potential energy flux. Similarly, BMEC and CMEC are combined together in the last line of the table. These numbers also appear in 11–13.

Table 2 
Regional Kinetic Energy Contributions (GW), Evaluated as the Volume Integration of the Various Terms of the Mean Kinetic Energy Budget Listed in 1
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            
 

    
    

MEC

DKEF DPW DPEF WW KEDA MEC
19.8 GW 41 GW 0.68 GW 6.8 GW 13.3 GW.

ˆ tt t t t t t
S S o o V VK p h dS dA dV dVu u u n u τ 

� (12)

It is clear the regional energy structure differs considerably from the 
open ocean. First, the net wind work is small, consistent with western 
boundary scaling. The most important contrast, however, is that the net 
potential energy flux divergence (−41 GW) has changed sign relative to 
the interior, now being negative. Further, this value of −41 GW is quite 
close in value to t t t t

x yu p v p , which is related to kinetic energy growth 
by flow down the mean pressure gradient B18. Another major change is 
that the kinetic energy flux divergence has now become of leading-order 
importance. Further, it is positive, indicative of an increase in total flux 
as one proceeds from the tip of South Florida to Cape Hatteras. While its 
growth does not account completely for the net potential energy flux, it is 
comparable (roughly 50%). These two points are supportive of the multi-
ple scales boundary layer analysis discussed in the previous section. We 
do note, however, that dissipation and mean to eddy energy conversion 
are both nonnegligible in the region. The importance of dissipation is 
consistent with the fact that topography everywhere interacts with the 
current in this region. The mean to eddy energy conversion is smaller 
than the growth in kinetic energy flux by roughly a factor of 2, although 
it is still a sizable contribution to the overall energy budget. This does not 
appear in the theoretical analysis. However, we note that the principle 
locations of MEC in box 5 are at topographic irregularities, the largest 
being the Charleston Bump, and the theory neglected along stream top-
ographic variations.

In the separated jet zone, box 6, the contributions to the energy equation parse according to

            
 

    
    

MEC

DKEF DPW DPEF WW KEDA MEC
26.4 GW 7.9 GW 3.5 GW 0.76 GW 21.3 GW.

ˆ tt t t t t t
S S o o V VK p h dS dA dV dVu u u n u τ 

� (13)

The net potential energy flux (7.9 GW) has changed sign from the coastal Gulf Stream jet and is consistent 
with a flow up the mean pressure gradient. The kinetic energy flux divergence is now negative, indicating 
a local decrease in kinetic energy flux, and both these quantities are leading-order contributors to the re-
gional balance. This is consistent with a recycling of energy, namely energy released to kinetic energy by 
an effectively down-gradient flow along the coast is now moving back up-gradient into potential energy. 
Equally significant, however, is MEC, which is consistent with a loss of mean energy to the eddy field. We 
show in Figure 5 (top) a map of net MEC integrated over the upper 1,000 m in the region of the Gulf Stream 
separation. The structure here is dominated by a sequence of alternating highs and lows that decrease in 
amplitude with increasing separation from Cape Hatteras. The cumulative net conversion moving from 
the west side of the box to the east side appears in Figure 5 (bottom), where it is seen that immediately 
downstream of Cape Hatteras loss to the mesoscale grows dramatically to losses greater than − 35 GW. 
Thereafter, there is a slow increase in amplitude, consistent with a conversion back to the mean field from 
the mesoscale and a decreasing tendency for the Gulf Stream to meander. The net effect of −14 GW reflects 
a considerable energy exchange in both directions although the final value represents a loss of mean energy 
to the mesoscale field.

A final comment is that the total mean to eddy conversion occurring over the coastal and separated Gulf 
Stream is roughly −34.6  GW (BMEC  +  CMEC, boxes 5, 6) which accounts for most of the total wind 
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Figure 5.  A map of MEC integrated to 1,000 m in the vicinity of the jet 
separation point appears in the top panel. The outlines of the U.S. east 
coast appear in black. The contours are in W m−2. A large maximum in 
loss to the mesoscale is seen immediately downstream of Cape Hatteras 
and followed by a sequence of undulations that decay with distance 
downstream. The bottom panel contains a plot of the cumulative net 
conversion from mean to eddies starting at the western end of the box on 
top panel. Note the rapid decline to values in excess of −35 GW followed 
by a slower increase.
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forcing of the subtropical North Atlantic region, ≈41 GW (WW, all boxes). Given that the total MEC inte-
grated over the broader North Atlantic is roughly −43 GW (BMEC + CMEC, all boxes), the coastal and 
separated jets clearly dominate the conversion. We do not claim that these numbers match each other, 
merely that their rough correspondence argues that bulk of the energetics equilibration of the North At-
lantic mean circulation occurs in these zones, with net mean forcing leaving the mean flow to enter the 
mesoscale field.

4.3.  Potential to Kinetic Energy Conversions

It is of interest that the two conversion terms, BMEC and CMEC, are of comparable strength in the subtrop-
ical North Atlantic. In the separated jet box 6, BMEC is −14.8 GW, while CMEC is −6.5 GW. What is nota-
ble about this is CMEC is usually associated with baroclinic instability, and is thought to be the dominant 
geostrophic instability in the ocean. While it is more widespread in distribution over the gyre than BMEC, 
certainly in the separated jet zone, it is weaker than the barotropic processes. Over the entire North Atlantic 
gyre, BMEC = −24.3 GW and CMEC = −19.3 GW (all boxes).

4.4.  Is the General Circulation Generally Inertial?

We now point out one last feature of the general circulation kinetic energy budget that falls slightly out of 
the above framework, but which we feel merits mention. From 3, the net flux of mean potential energy in 
the interior is given by

 mean PE flux
tt tp hu u� (14)

to the neglect of diabatic and nonhydrostatic quantities. The analysis of the open ocean results have argued 
that the divergence of the effective potential energy flux, that is, DPW + DPEF, is roughly in balance with 
the open ocean wind energy input, in keeping with ventilated thermocline dynamics. What we want to 
emphasize is that this divergence is small compared to the amplitude of the participant fluxes. This appears 
in Figure 6 which plots the latitudinal dependence of the net meridional flux 

tt tv p vh  integrated over 
longitude and the longitudinal dependence of zonal flux 

tt tu p uh  integrated over latitude in boxes 1 and 
2. The total fluxes are as large as −70 GW, that is, much larger in value compared to either the local wind 
energy inputs or net divergences (O(10 GW)). The implication of this is that the interior geostrophic venti-
lated thermocline is dominantly recirculating energy. This is the earmark of an inertial, interior, geostrophic 
circulation.

5.  Summary
We have attempted in this paper to construct a comprehensive energy picture of the mean subtropical 
gyres. This is motivated by the current interest in detailing ocean energy broadly speaking and the idea that 
approximately ≤1 TW flows from the large-scale, low-frequency winds to the oceanic mesoscale. We argue 
by means of a multiple-scale analysis that the interior receives the bulk of the wind forcing, but is not the 
location where the mean circulation loses energy. We then analyze an anisotropic western boundary cur-
rent that leads to coastal jets fed by the ventilated thermocline. These inertial jets accelerate at the expense 
of pressure work. Coastal jets are connected downstream to open ocean jets that require full primitive 
equation dynamics for their description. As such they are the only places that can involve mean flow and 
mesoscale interactions.

We next analyze an eddy-resolving model of the North Atlantic, identifying the time mean flow with the 
large-scale flow of the theory. We find the ocean interior is consistent with the ventilated thermocline and 
exhibits minimal energy loss to the mesoscale while largely recycling energy. In the coastal Gulf Stream, 
kinetic energy flux grows due to net pressure work, which is in agreement with our theory. Our analysis 
also finds nontrivial dissipation and mean to eddy energy conversion, but these are smaller than the ex-
changes between kinetic energy and pressure work. The coastal mesoscale generation appears to have 
topographic origins. The open ocean Gulf Stream emerges as the location of the largest and most dynamic 
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mean-to-eddy energy conversion, involving exchanges with eddies of both signs and an associated flow up 
the mean pressure gradient. The dynamics of this area are rich and at best only qualitatively described by 
QG dynamics.

Fofonoff (1981) in a review of the Gulf Stream system proposed a North Atlantic energy structure much like 
that seen here. He suggested that wind forcing in the interior largely acted to increase the large-scale poten-
tial energy flux, and that Gulf Stream acceleration came at the expense of the large-scale pressure gradient. 
He also identified the separated jet as a region of energy recycling caused by mean flow in the direction of 
increasing pressure. To this picture, we add an eddying component to the open ocean Gulf Stream and sug-
gest the energy recycling includes the ocean interior as well. That Fofonoff was able to infer this structure 
from the observations and model results available over 30 years ago is testament to his remarkable insight 
into ocean dynamics.

We argue in this paper that the separated jet is the principal area of mesoscale generation by geostrophic 
instabilities of the mean flow. Inasmuch as wind-driven gyres are a common feature of the mid-latitude 
general circulation, this analysis may well apply beyond the North Atlantic where the numerical study has 
been confined. To further clarify oceanic wind-driven energy, focused studies in such regions might well be 
fruitful avenues for pursuit.

Appendix A:  Multiple-Scale Analysis of the Wind-Driven Circulation
The purpose of this appendix is to present the details of the multiple-scale analysis resulting in our 
segmented view of the general circulation. The interior analysis appears first, followed by the coastal jet 
analysis. We begin with the hydrostatic equations of motion written in buoyancy coordinates (Bleck & 
Chassignet, 1994), assuming a linear equation of state in which we have only a single thermodynamic 
variable.
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Figure 6.  Zonal and meridional effective potential energy fluxes integrated across interior boxes 1 and 2. The total 
fluxes are several tens of GW which is significantly larger that either the local wind energy inputs or the effective 
potential energy flux divergences. Note also that the zonal flux in box 2 drops off dramatically at the Caribbean 
archipelago near 60°W. This feeds the increase in DKEF seen in box 2.
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where M is the Montgomery potential, M = p − bz where p is pressure (Montgomery, 1937), b is buoyancy, 
Dx, Dy are zonal and meridional, three dimensional, viscous fluxes, diffusive effects are ignored and the 
notation is otherwise standard. The equations are then nondimensionalized using the planetary length 
scale, Lβ = fo/β (where fo and β are typical values for the Coriolis parameter and its meridional derivative) 
and a specified surface buoyancy range. The buoyancy range is used to define the deformation radius, from 
which a time scale representing the time needed for a planetary wave to cross the basin is derived (see A4). 
Pressure scaling is obtained from the hydrostatic balance using the Welander (1959) thermocline thickness 
scaling. After nondimensionalization, A1 become
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where Ro = U/(foLβ) is the Rossby number (with velocity scale U) and frictional effects have been ignored. 
The quantity f is now nondimensionalized by fo but a function of meridional location Y. The independent 
variables X, Y denote zonal and meridional location as scaled by the planetary length scale and T nondimen-
sional time as scaled on the wave basin transit time. Defining the deformation radius, Rd, as




 2
2 2

Δ Δ ,d
o o o

g H bHR
f f� (A3)

where Δρ is the assumed known surface density variation and ρo a reference density, the Rossby number 
turns out to be




2

2 .d
o

RR
L

� (A4)

At leading order, A3 return the PG equations. To enrich them in a search for their interactions with smaller 
deformation radius motions, a standard multiple scales approach is used, which involves replacing all the 
derivatives with their multiple scale versions, that is,


  

 
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1 ,
X x X

� (A5)

where δ is the ratio of the deformation radius to the planetary scale
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and the lower case x now denotes a nondimensional small spatial scale. Substitutions like A5 are carried out 
into A3 in both space and time, reflecting that deformation scale dynamics are faster and shorter in scale 
than planetary motions. A key point here is that the planetary scale and the deformation scale have been 
introduced isotropically into the equations, that is, mesoscale variability is assumed to scale with the defor-
mation radius in both horizontal directions, and PG dynamics with Lβ in a similar way.

The next step is to expand all variables in the small parameter δ and exploit the implied scale separations in 
space and time by averaging procedures. It turns out at leading order, the Montgomery potential depends 
only on the buoyancy, the long spatial scale and the slow temporal scale, Mo = Mo(X, Y, b, T), while geostro-
phy involves both large and small scales

 
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 
 

   
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1

1
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y Y

f Y v M M
x X

� (A7)

where M1 is the next order correction to the Montgomery potential. Consistent with A7, deformation radius 
buoyancy anomalies are seen to be order Rossby number relative to the mean state stratification. A similar 
approach to the continuity equation, after expansion in δ, leads to
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It is here that the lack of QG feeback onto the PG structure becomes apparent. This is illustrated by averag-
ing A8 over spatial scales large compared to the deformation radius, but small compared to the planetary 
scale, that is,

  
1 ,A dxdy
A

� (A10)

where the overbar denotes a spatial average and A represents an area whose length scales in the meridional 
and zonal directions, LA, are much larger than the deformation radius used to nondimensionalize the short 
spatial scales. As explained in P84, such an integration over a divergence operator depending on the short 
spatial scales leads to a result that is O(Rd/LA) ≪ 1 asymptotically small, while quantities depending on the 
large-scale variables X, Y are untouched. Mathematical consistency requires such quantities must be sepa-
rately equated to zero. This averaging is a standard multiple-scales procedure and should not be confused 
with other averaging procedures often employed in buoyancy coordinates, like “thickness weighted averag-
ing” (TWA), or “transformed Eulerian mean” averaging (Gent & McWilliams, 1990; Plumb & Ferrari, 2005; 
Young, 2012), the objectives of which are different than those here.

The result of the averaging A10 is

       
   
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� (A11)

The left-hand side of A11 is independent of the fast time, t, and so to suppress secular growth in time both 
sides must vanish independently. In addition, spatially averaging A7 over lengths large compared to the 
deformation radius shows the averaged velocities are determined entirely by the leading-order Montgom-
ery potential. Hence PG and the ventilated thermocline are obtained, but no connection to the QG fields is 
found.

In contrast, pushing the analysis further to clarify the QG dynamics returns
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is recognized as the usual QG potential vorticity, J denotes a Jacobian based on the fast spatial scales and Ĵ  
is defined by
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Note that in A12, the PG-controlled ventilated thermocline strongly affects the QG evolution. It provides 
a background advection of QG PV as well as defines a background potential vorticity field (the term 

 o

f

z
b

 

in A12) upon which the QG evolution occurs. Thus PG feedbacks on QG are strong, while feedbacks in the 
other direction do not exist. This implies that the system does not have a balanced energy budget.

The interior eddy Equation A12 admits baroclinically and barotropically unstable eddies, but the analysis 
to this point argues that the associated energy conversions are weak compared to those needed to obtain 
a global energy balance. To obtain a consistent energy budget, the dynamics behind the analysis must be 
enriched. In this paper, of the several possible choices for enriching the equations, we explore the conse-
quences of a particular one, and then appeal to the analysis of a circulation model to support that choice 
as relevant.

Specifically, we connect the mesoscale and PG structure at leading order by an explicit introduction of ani-
sotropy into the analysis. This is motivated by the recognition of strong boundary currents on the west sides 
of ocean basins. These currents have short spatial scales in the across-current direction and long spatial 
scales in the along-current direction, and are thus seen to fall somewhere between the primary scaling as-
sumptions of the preceding multiple-scale analysis. Further, and importantly, they violate essential compo-
nents of both QG and PG dynamics. First, the isopycnal depth anomalies occurring in the boundary jets are 
leading order on short scales, that is, isopycnals experience O(1) depth changes over a deformation radius. 
In addition, in the cross-stream direction, the Rossby numbers of the flow naturally are found to have O(1) 
values. Both characteristics are strongly non-QG and strongly non-PG.

Recognizing the appearance of the anisotropy is forced by the boundaries, we consider appending a bound-
ary layer to the interior. As is well-known, boundary layer analyses involve rescaling the variables. If we 
consider the simplest case of a meridional boundary, then mass conservation requires the meridional flow 
be rescaled. Specifically, the interior southward mass flux scales like

  2 ,o dFlux HVL f R H� (A15)

which requires a boundary layer flow of strength foRd if that mass is to be returned to the north over a width 
of the deformation radius. Thus the northward velocity in A3 must be rescaled by a factor of δ−1 (   1v̂ v). 
The anisotropy required by the boundary is brought into the analysis by introducing a fast spatial scale into 
the zonal coordinate only, that is,


  

 
  

1 ,
X X x

� (A16)
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while leaving the meridional derivatives untouched. Expanding the equations in δ as before yields the lead-
ing-order equations





   
    

   
     

  
     

( ) ( ) 0.

ˆ

ˆ ˆ ˆ ˆ

ˆ

o o

o o o o o o o

o o o o o

fv M
x

v u v v v fu M
t x Y Y

z u z v z
t b x b Y b

� (A17)

Straightforward manipulations of A18 lead to

  
  

  
0,ˆ ˆ ˆ ˆo oq u q v q

t x Y
� (A18)

where








.
ˆ

ˆ
o

o

v f
xq

z
b

� (A19)

Equation A18 is recognized as conservation of potential vorticity by fluid parcels in the boundary layer, where 
boundary layer potential vorticity is given by A19. Exploiting hydrostatic dynamics, A19 can be rewritten as

   
 

   
2,ˆo oM fq M f

x x b b
� (A20)

which should be recognized as an elliptic equation for Mo. Such equations, subject to conditions on the 
boundary and a far field value for Mo set by the interior, can be inverted to give a unique answer. The sim-
plicity and clarity of A20 provide one of the strongest motivations for conducting this analysis in buoyancy 
coordinates. Knowing Mo determines ˆov  by geostrophy. Recalling that the interior leading-order thermocline 
is independent of rapid time t, solutions of A18 independent of t are sought. Thus uo can be inferred from 
A18b and boundary layer mass flux can be expressed by a streamfunction





 


 
 

 
 

,

ˆo o

o o

v z
x b

u z
Y b

� (A21)

so ˆ ˆ( )q q . Equivalently, the boundary layer PV is determined by the interior PV. These equations essen-
tially represent the addition of an inertial boundary layer to the ventilated thermocline.

This boundary layer analysis applies to currents along western ocean coasts. Such currents are not, however, 
confined to the coasts; rather, they separate from lateral topography and move into the ocean interior retain-
ing their identity as a jet for considerable downstream distances. While there is some degree of anisotropy 
associated with such currents, numerical solutions and observations both show that the jet evolution is 
quite complex. It is not therefore clear if a reduced set of equations can be obtained that fully describe the 
leading-order behavior of separated jets. It appears that the full primitive equations are required, although 
the geographical location at which the jet source is located is known.

Appendix B:  The Connection Between Buoyancy Coordinates and 
Geopotential Coordinates and Regional Energetics
We interpret the time-means u, v, w, and p from the model output with the large-scale variables of the mul-
tiple-scale analysis, which is conducted in buoyancy coordinates. In general, time averaging in these two 
coordinate systems are not the same, but here the characteristics of the large-scale flow removes this issue, 
as we now show.
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B1. Interior

For the isotropic, ocean interior, the theoretical leading-order momentum equations are geostrophy, involv-
ing both large and small scales

  
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� (B1)

where the leading-order Montgomery potential, Mo = po − bzo is a function only of the long spatial scale 
coordinates, and the derivatives are taken along buoyancy surfaces, as indicated in this appendix by the 
notation |b. We have also replaced the vertical turbulent stress with its form in geopotential coordinates, 
that is, we have used





 

 


,

, .
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x y

o

b
zz
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� (B2)

We have augmented geostrophy with vertical “turbulent” momentum transport, which is expected to be 
sizable only in the very near surface region where it conducts wind momentum into the fluid. Averaging 
this equation in space demonstrates that large-scale flow is geostrophic and independent of the mesoscale
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where the overbar (x) denotes a spatial average. Expanding the Montgomery leads to
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If we now define the function

( , , ( , , ), ) ,o ob X Y z X Y b t b� (B5)

the quantity b in B4 can be replaced by bo and using the well-known formula for converting to geopotential 
coordinates from buoyancy coordinates
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With the hydrostatic equation





,op b

z
� (B7)

B4 reduces to geostrophy, augmented by turbulent momentum transport.
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In geopotential coordinates
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Vector multiplying by the large-scale horizontal velocities, which are the same in either coordinate system, 
leads to the interior energy equation B11, provided that







t
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t
o

t
o

u u

v v

p p

� (B9)

as we assumed.

B2. Interior Energy

Vector multiplying B8 by tu  and using B9 yields

0     

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
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( ) .u t t t t t x t t y t
p w b u
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A volume integration of B10 gives

    S
t t t

A
t

o
tp h dV dAu u( ) ( ) ,0 � (B11)

where interior viscous dissipation has been ignored, τo is the surface wind-stress, (0)tu  is the surface velocity 
and A is the ocean surface part of the surface S bounding the volume V. We have also used the ventilated 
thermocline form of the tracer equations

   0,t tu� (B12)

where χ is a tracer. Importantly, eddy tracer transports are neglected in B12. The content of B11 reflects 
classical Sverdrup dynamics: the net export of energy from the domain is provided by wind forcing. Note 
the absence of kinetic energy flux divergence, consistent with the small Rossby number assumption behind 
geostrophy.

B3. Coastal Jet

For the anisotropic coastal jet, the momentum equations are A18, for convenience restated here in the ap-
pendix notation
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� (B13)

where uo and ˆov  are independent of the rapid time scale. Equation B5 implies

 ,ˆ ˆ( , , , ) ( , , , )o o ov x Y b T v x Y b T� (B14)

with a similar equation holding for uo. Converting the horizontal derivatives from buoyancy surfaces to 
geopotential surfaces leads to
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where the derivates are now taken on geopotential surfaces.

The coastal jet equations in geopotential coordinates are as follows:
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Vector multiplying B16 by the time mean horizontal velocities leads to
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The absence of the rapid QG timescale from the governing equations implies mesoscale dynamics do not 
participate, as motivated by potential vorticity conservation A18. Integrating B17 over a coastal jet volume 
yields

 
     

 
2( ) [ ] .

2

t
t t t t t

S V
v ndS u p v p dV

x y
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The interpretation of B17 is quite straight-forward: down or up pressure gradient flow will increase or de-
crease the kinetic energy flux. We will discuss this form of the energy equation for the coastal jet. If we 
include potential energy into B18, it becomes

    
2( )( ) 0,

2

t
t t t

S
v p h dSu n� (B19)

That is, total energy is conserved, B12 having again been used.

Appendix C:  Mean and Eddy Energy With a Seawater Equation of State
Here, we flesh out our full mean and eddy energy derivations. First, the time averaged hydrostatic balance is





( , , ) ,

ttp b S P
z

� (C1)

where the dependencies on potential temperature θ, salinity, S, and static pressure P = Po − ρogz explicitly 
appear. The quantity Po is a constant representing average atmospheric sea level pressure and ρo is a Bouss-
inesq reference density. We will approximate this balance using

 ( , , ) ( , , ),
t t tb S P b S P� (C2)

To see this, buoyancy at any one time can be related to the time mean thermodynamic quantities by Taylor 
expansion
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                2 2( , , ) ( , , ) ( ) ( ) ( , , ).t t t t
Sb S P b S S P b b S S O S S� (C3)

The first-order contributions vanish upon time averaging, so to second order we recover C2. Comparisons 
between ( , , )

t
b S P  and ( , , )t tb S P  in Figure C1 show that C3 and C2 are good approximations.

Adding and subtracting t tw b , in view of C1, converts 1 to
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Following Young (2010), introducing potential enthalpy,




 ( , , ) P
Po

o

bh S P dP
g� (C5)

where the integral assumes fixed potential temperature and salinity. Thus we can define the mean potential 
enthalpy, following Young (2010)


  ,

t
t P
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o

bh dP
g

� (C6)

and its mean advective derivative

           .
t tt t t t t t t t

Sh w b h h Su u u� (C7)

The mean tracer equations are as follows:

       ,
tt tu u� (C8)

where χ is either θ or S, and nonhydrostatic and diffusive processes have been ignored. The tracer deriva-
tives of mean potential enthalpy can be written
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Figure C1.  Comparison of time mean buoyancy to buoyancy computed using time mean θ and S. Panel (a) shows the 
mean buoyancy, and panel (b) the buoyancy based on mean tracers at a depth of 64 m. The relative difference appears 
on panel (c), highlighting the small error (<1%) made when computing buoyancy from time mean tracers. Panel (d) 
shows the relative difference but at 228 m, where the error is even smaller.
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From C7 and C8, it follows that
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where

       
t t tt t

Sw b b w b w S� (C11)

has been used and second-order tracer derivatives of mean potential enthalpy (e.g., 
t
Sh ) have been ignored.

The exact potential energy equation is

     ,S
d d dh wb h h S
dt dt dt

� (C12)

so upon time averaging

   
t t

h wbu� (C13)

to the neglect of nonhydrostatic and diffusive processes. Equation C4 can then be written as 3.

Appendix D:  Diagnosing Kinetic Energy From the MITgcm
We outline here the energy diagnostic method we developed which is robust given the many design pa-
rameters involved in the MITgcm. Our method relies heavily on diagnostics traditionally available from the 
MITgcm. For example, the zonal momentum equation can be written as

 
     

 
,uu u fv p D

t x
u� (D1)

where u is the zonal velocity, u is the three dimensional velocity, f the Coriolis parameter, v the meridional 
velocity, p the pressure, and Du the zonal viscous operator. The MITgcm provides fields of the partial time 
derivative of u, the combination of the advective terms and the Coriolis acceleration, the pressure gradient 
and the contributions to the viscous dissipation (there are several). Similar fields can be output for the 
meridional equation. The kinetic energy equation is developed analytically by multiplying D1 by the zonal 
velocity, performing a similar procedure to the meridional equation and adding them. The MITgcm uses 
an Adams-Bashforth explicit time stepping for momentum, such that the tendency terms on the right-
hand side of D1) are evaluated at mid-point in time. They are thus multiplied by their associated velocities 

  1/2 11 ( )
2

n n nu u u  to insure that the time integrated kinetic energy trends are equal to

   ( ) ( ).t f
t f iti
Kdt K t K t� (D2)

We follow this recipe during model execution using the model momentum diagnostics. A numerical issue 
is that the MITgcm employs a C grid (Marshall et al., 1997), so that the locations in space of u, v and the 
various tracers differ. The diagnostic fields balance the budgets of the various quantities at the native grid 
locations of the variables, for example, the momentum budget of the zonal velocity is balanced at the zonal 
velocity grid points, etc. We have opted to balance the energy budget at the tracer points, according to
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         ( ) ( ) ,
i j

K u u fv v v fuu u u� (D3)

where the overbars  i and  j denote the average of the zonal and meridional momentum neighbors of a 
given tracer point along the x- and y-axis, respectively. Following a similar procedure for each of the contrib-
utors to the momentum equations results in a machine precision kinetic energy balance.

Data Availability Statement
The contributions to the mean kinetic energy equation from our model run are available at http://ocean.fsu.
edu/∼qjamet/share/data/energetics/.
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