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Abstract13

Examining an ensemble of high-resolution (1/12◦) North Atlantic ocean simulations, we14

provide new insights into the partitioning of the Atlantic Meridional Overturning Cir-15

culation (AMOC) variability between forced and intrinsic at low-frequency (2-30 years).16

We highlight the existence of a basin scale intrinsic mode that shares similarities with17

the atmospherically forced signal. The RAPID-MOCHA-WBTS array is found to be part18

of this mode, such that we ascribe 50% (∼0.8 Sv) of its interannual variability as intrin-19

sic. At decadal time scales, intrinsic variability is rather small (∼0.2 Sv) compared to20

the recently observed 2-3 Sv AMOC downturn. This downturn is thus unlikely to be in-21

duced by locally generated intrinsic ocean dynamics. We interpret this intrinsic variabil-22

ity as ’chaotic’, i.e. somewhat unpredictable, providing an estimation of the quantita-23

tive accuracy of AMOC variability within eddy-resolving numerical models.24

1 Introduction25

The Atlantic Meridional Overturning Circulation (AMOC) is an important oceanic26

component of the climate system, placing a premium on understanding its variability.27

It affects regional and global climate by modulating oceanic surface temperatures in the28

North Atlantic (Caesar et al., 2018; Knight et al., 2005; McCarthy et al., 2015), impact-29

ing precipitation over Europe (Sutton et al., 2012) and North Africa (Zhang et al., 2006)30

and influencing hurricane activity in North America (Goldenberg et al., 2001). The mech-31

anisms driving AMOC variability remain however debated mostly due to the large spread32

in the simulated spatio-temporal patterns between models (Buckley et al., 2016), and33

due to the difficulties in validating numerical results against sparse and too short obser-34

vational time series.35

The atmosphere is thought to drive a significant portion of AMOC variability at36

various time scales, such that increasing greenhouse gases are expected to induce a de-37

cline of the AMOC (Caesar et al., 2018; Kirtman et al., 2013; Saba et al., 2016). Recent38

observations suggest that this decline is underway (Smeed et al., 2018). The link between39

the observed decline and the simulated response to increased greenhouse gases remains40

unclear however, with observed patterns of surface ocean metrics associated with the ob-41

served AMOC decline that resemble those found in climate models (Smeed et al., 2018),42

but with a much larger amplitude than the simulated long-term forced trend (Smeed et43

al., 2014). Aside from surface forcing, the ocean also develops its own intrinsic variabil-44

–2–



manuscript submitted to Geophysical Research Letters

ity (Penduff et al., 2011; Sérazin et al., 2015), so the AMOC strength does not only de-45

pend on the atmosphere. The contribution of such intrinsically driven ocean dynamics46

for the low-frequency AMOC variability has been recently underscored (Grégorio et al.,47

2015; Leroux et al., 2018), but our understanding of such processes is rather limited. This48

study sheds more light on such a contribution, and discuss implications for the interpre-49

tation of observational data set such as the RAPID-MOCHA-WBTS program.50

To describe this variability, we use here an ensemble of numerical simulations of51

the North Atlantic. As we shall see, we taylored this ensemble to separate the AMOC52

variability into two contributions: The intrinsic (locally generated) variability and the53

atmospherically forced variability. We use a high resolution (1/12◦), regional (20◦S to54

55◦N) North Atlantic configuration to produce a 12-member ensemble consisting of 50-55

year long members, spanning the period 1963-2012. Each ensemble member corresponds56

to the same model configuration (external forcing and open boundary conditions). The57

only difference between the members of the ensemble is the initial condition. We pro-58

vide a full description of the model in Section 2. In Section 3, we quantify the contri-59

bution of the internal ocean dynamics for the total low-frequency AMOC variability, and60

highlight the existence of a basin scale mode of intrinsic low-frequency AMOC variabil-61

ity. We propose a link between these results and observations at 26.5◦N provided by the62

RAPID-MOCHA-WBTS program (McCarthy et al., 2015) in Section 4. We conclude and63

discuss the results in Section 5.64

2 Model and Methods65

The 12-members ensemble simulation is performed with a regional configuration66

of the Massachusetts Institute of Technology General Circulation Model (MITgcm, Mar-67

shall et al., 1997). The North Atlantic domain extends from 20◦S to 55◦N. The horizon-68

tal resolution is 1/12◦ and we have 46 layers on the vertical ranging from 6 m at the sur-69

face to 250 m at depth. Water masses that enter or leave the domain through the north-70

ern and the southern boundaries of the domain, as well as at the Strait of Gibraltar, are71

represented through the use of open boundary conditions derived from the 55-year long72

1/12◦ horizontal resolution ocean-only global configuration ORCA12.L46-MJM88 (Mo-73

lines et al., 2014; Sérazin et al., 2015), spatially interpolated on our model grid. At the74

surface, the ocean model is coupled to an atmospheric boundary layer model (Cheap-75

AML, Deremble et al., 2013). This approach is used to better represent air-sea exchanges,76
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and to avoid the suppression of surface ocean dynamics caused by a prescribed atmo-77

sphere with an infinite heat capacity. The configuration is integrated forward in time for78

50 years over the period 1963-2012 with a 12-members ensemble strategy. Further de-79

tails on the configuration, the initial conditions, and the simulated North Atlantic oceanic80

mean state are given in Supporting Information.81

To assess low-frequency intrinsic AMOC variability, we first remove trends and fre-82

quencies lower than 50 years in each ensemble member, estimated with a nonparamet-83

ric locally estimated scatterplot smoothing (LOESS, Cleveland et al., 1988) operator.84

We compute a climatological annual cycle from the 50-year ensemble mean, and then re-85

move this annual cycle from each member. Finally, the residuals are low-pass filtered with86

a 1-year cut-off period to remove the overwhelmingly large, daily to weekly variability87

due to atmospheric forcing. This filtering procedure isolates the ocean variability in the88

2 to 30 year time bands (cf. Supporting Information).89

We use a statistical approach to separate the intrinsically generated from the ex-90

ternally forced variabilities in our ensemble. We first compute an ensemble mean (50 years91

long time series) by averaging the oceanic state simulated by the 12 members. This time92

series represents the signal that is common to all members, and is assumed to originate93

from the external forcing, either from the surface or through the open boundaries. We94

interpret the ensemble mean as the forced signal, and define its temporal variance σ2
F95

following Leroux et al. (2018):96

σ2
F =

1

T − 1

T∑
t=1

[
〈fi(t)〉 − 〈fi(t)〉

]2
, (1)

with T the length of the 50-year long simulations, < . > the ensemble mean operator97

and x the time mean operator. Since only initial conditions differ between each realiza-98

tion, the residual of each member with respect to the ensemble mean is, by construction,99

due to ocean dynamics sensitive to the initial conditions. We interpreted this residual100

signal as the intrinsic variability, and define its variance σ2
I following Leroux et al. (2018):101

σ2
I =

1

N − 1

N∑
i=1

[fi(t)− 〈fi(t)〉]2, (2)

with N = 12 the number of members, i = 1, .., N the member number. The total vari-102

ance is simply defined as the sum of the intrinsic and the forced variance σ2
T = σ2

I +103

σ2
F .104
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3 The intrinsic AMOC variability105

We plot in Fig. 1 the intrinsic-to-total AMOC variance ratio R =
σ2
I

σ2
T

in latitude-106

depth space. This provides a measure of the relative contribution of ocean internal dy-107

namics for the total AMOC variance at interannual-to-decadal time scales. Intrinsic AMOC108

variability is routinely 50%, and exceeds 60% in the deep North Atlantic. Surface ratios109

are typically smaller, reflecting an increasing control of the AMOC by the atmosphere,110

although ratios of 30% are common. R exceeds 50% at 400 meters near 38◦N where the111

Gulf Stream separates from the east coast of the United States, highlighting the strong112

meso-scale contribution to AMOC variability. Our estimates of the intrinsic-to-total ra-113

tio are somewhat larger than earlier studies for this region, but those were conducted114

with either a different method (Grégorio et al., 2015), or at coarser resolution (Leroux115

et al., 2018). At 26.5◦N, R exceeds 40% as shallow as 500 meters, and increases near the116

bottom. Intrinsically driven versus forced AMOC variability at that location is further117

discussed in Section 4.118

We now wish to extract the leading modes of forced and intrinsic AMOC variabil-119

ity in the latitude-depth space and compare their respective spatio-temporal patterns.120

We plot the first Empirical Orthogonal Function (EOF) of the ensemble mean AMOC121

on the top left panel of Fig. 2. It explains roughly 40% of the total forced AMOC vari-122

ance, and is characterized by a broad positive signal from about 10◦S to roughly 45◦N,123

and negative signal elsewhere. The change of sign around 45◦N is associated with a change124

of sign in the first EOF of the zonal winds (not shown). This pattern strongly resem-125

bles the delayed response of the AMOC to the North Atlantic Oscillation (NAO) usu-126

ally identified in climate and ocean models (Deshayes et al., 2008; Eden et al., 2001; Gastineau127

et al., 2012). Furthermore, its associated Principal Component (PC, bottom left panel)128

peaks in the 2-3 and 6-8 year frequency bands typical of the NAO spectrum (Czaja et129

al., 2001; Reintges et al., 2017). We thus interpret this first EOF as the signature of a130

local, atmospherically forced AMOC variability.131

To extract the leading mode of intrinsic AMOC variability, we perform a Princi-132

pal Component Analyses for each ensemble residual and average the results (Fig. 2). We133

first note that the 10 first EOFs explain about 75% of the total intrinsic AMOC vari-134

ance, while this number reaches more than 90% in the case of the forced signal. Such135

difference is indicative of a less organized intrinsic variability. The variance explained136
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by the first intrinsic EOF is relatively high (∼30%), and the averaging procedure high-137

lights the emergence of a large scale mode of variability extending from 10◦S to about138

35◦N with a maximum of about 1 Sv (1Sv = 106 m3s−1) around 20◦N and 2000 m depth.139

This pattern exhibits spatial similarities with the atmospherically forced mode discussed140

earlier. Notable differences arise however in their spectral properties, where both intrin-141

sic and forced leading modes peak (locally) at interannual time scales. The intrinsic PSD142

decreases monotonically at lower frequencies whereas the forced mode dominates at long143

time scales. This suggest that in the future generation of climate models with eddy re-144

solving ocean models, projections of future changes in the North Atlantic overturning145

would be somewhat limited at interannual timescales, but might benefit of better pre-146

dictive skills at decadal and longer timescales.147

Finally, note that, although intrinsic variability controls more than 50% of the to-148

tal variability in the Gulf Stream (Fig. 1), this region does not appear to be part of the149

leading mode of intrinsic AMOC variability. We suspect this is due to the mesoscale dy-150

namics of this region, and Gulf Stream instabilities. As a result, although some signal151

are found in the second (Fig. S7) and subsequent EOFs for each individual member, they152

take place at slightly different locations such that averaging strongly damp their signa-153

ture (Fig. 2, middle right panel). In other word, such modes of variability are member-154

dependent, and not considered here.155

4 A focus on RAPID observations156

We now wish to replace our ensemble-based results in the context of observations157

and discuss implications for the interpretation of observational data set. The RAPID-158

MOCHA-WBTS program (McCarthy et al., 2015) refers to a large, multi-national ef-159

fort to monitor the strength of the AMOC, principally at 26.5◦N in the North Atlantic.160

We have computed numerical equivalents of the observed AMOC by integrating net model161

northward transport across the North Atlantic, from Florida to the east coast of Africa162

(cf Supporting Information). Left panel of Fig. 3 compares the time evolution of the AMOC163

northward transport anomalies at 1200 meters, the maximum AMOC (Fig. 1), as mea-164

sured by the RAPID array (red line) against that simulated by our 12 ensemble mem-165

bers (thin gray lines). We first note that our simulated AMOCs tend to underestimate166

the observations at the beginning of the record and overestimate them toward the end.167

This mismatch is associated with the observed weakening (2-3 Sv) AMOC trend from168
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2004 to 2012, a decrease argued to be due to a change in mid-ocean geostrophic (Smeed169

et al., 2014). Our simulations do not capture this over the 2005-2011 timeframe, and we170

do not either obtain intrinsic low-frequency variability this large. The PSD of the sec-171

ond intrinsic mode of variability is found to dominate over the forced component at decadal172

time scale (Fig. 2, bottom right panel). However, this second EOF explains only 10%173

of the intrinsic variance, such that it is likely to contribute only for ∼0.2 Sv to the to-174

tal AMOC variability. We thus conclude that the observed 2-3 Sv AMOC transport down-175

turn between 2004 and 2012 cannot be explained as local intrinsic variability only. We176

have conducted additional sensitivity experiments on the choice of open boundary con-177

ditions (not shown), and found that decadal AMOC variability at 26.5◦N are mostly driven178

by remote signals. Further investigations of such remote signals in our North Atlantic179

regional configuration are underway and will be reported somewhere else.180

The level of agreement between the observed and ensemble mean AMOC transports181

(Fig. 3, black line) remains however fairly high (correlation r = 0.8), with predominant182

near-seasonal fluctuations of ∼O(1 Sv). The pronounced weakening (∼3 Sv) of the AMOC183

over the period 2009/2010 interpreted by others as due to atmospheric forcing (Roberts184

et al., 2013) is for instance well reproduced by all members. Each exhibits peculiarities185

however, such that AMOC variability is also member-dependent, highlighting the pres-186

ence of an intrinsic variability at that location. At 26.5◦N, our estimate of the intrinsic-187

to-total variance ratio R exceeds 40% at 1200 meters, the maximum AMOC (Fig. 1). The188

power spectral analysis of the simulated time series (Fig. 3, right panel) reveals that in-189

trinsic ocean dynamics contributes about 50% at interannual time scales and about 20-190

25% at decadal time scales. In terms of volume transport, these variabilities are asso-191

ciated with an AMOC standard deviation of about 0.8 Sv and 0.2 Sv, respectively. This192

time scale separation between forced and intrinsic variability echoes the differences in193

spectral properties between the leading modes of forced and intrinsic AMOC variabil-194

ity discussed earlier (Section 3).195

To shed light on such a potential connection between the temporal variability at196

26.5◦N and the leading mode of AMOC variability, we have regressed the AMOC sig-197

nals in the latitude-depth space onto the the time series at 26.5◦N (Fig. 4). The forced198

ocean response at the RAPID location is associated with positively correlated anoma-199

lies from 10◦S to 45◦N intensified between 1000 and 2000 meters, and negatively corre-200

lated anomalies elsewhere. This spatial pattern strongly resembles the first EOF of the201
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forced signal (Fig. 2), with a correlation factor of r = 0.81 between associated time se-202

ries. Similarly, the regression pattern for the intrinsic AMOC variability at 26.5◦N re-203

sembles the first EOF of the intrinsic signal (Fig. 2), with positively correlated anoma-204

lies from 10◦S to about 35◦N (Fig. 4, right panel), and a correlation factor of r = 0.68205

between associated time series. The similarities between regression maps and EOFs strongly206

suggest that the temporal variability at 26.5◦N is part of a spatially distributed North207

Atlantic structure, with both intrinsic and forced origins that mostly differ by their spec-208

tral properties.209

5 Conclusion210

We have discussed here the results of an ensemble-based examination of the At-211

lantic Meridional Overturning Circulation (AMOC) variability at low-frequency (2-30212

years) and we have identified the dominant spatio-temporal patterns of variability when213

mesoscale ocean eddies are resolved. Our results suggest that a significant fraction of the214

AMOC variability is sensitive to initial conditions, or in other words, is ’chaotic’. The215

contribution of such a chaos is found to exceed 50% in the Gulf Stream region, and to216

40-50% at the RAPID location. By extracting the leading modes of variability through217

Principal Component Analysis, we have revealed the presence of a basin scale mode of218

intrinsic AMOC variability in the North Atlantic. The variability of this intrinsic mode219

peaks at interannual time scales, and its spatial pattern resemble the mode of AMOC220

variability locally forced by the atmosphere. These results extend in the latitude-depth221

space earlier investigations of intrinsically versus forced AMOC variability performed by222

Grégorio et al. (2015) and Leroux et al. (2018) for a given depth.223

We also compared our model output with the RAPID-MOCHA-WBTS program224

for which continuous measurements of the AMOC at 26.5◦N are performed since 2004225

(McCarthy et al., 2015). At low-frequency, the dominant observed trend in the left panel226

of Fig. 3 is the 2-3 Sv AMOC transport downturn interpreted by Smeed et al. (2014)227

as a result of mid-ocean geostrophic dynamics. Our simulations do not capture this over228

the 2005-2011 timeframe. Moreover, we do not obtain intrinsic low-frequency variabil-229

ity this large; our low-frequency fluctuation estimates are more like ∼0.2 Sv. The ob-230

served downturn can thus not be attributed to local intrinsic variability only, although231

our estimate remains in the range of long-term AMOC forced trends simulated by cli-232

mate models (Caesar et al., 2018). However, we also emphasize our results are limited233
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to intrinsic variability of North Atlantic origin. We focus here on one ensemble, but have234

others where boundary conditions are varying. Their analyses, not detailed here, sug-235

gest the downturn originates perhaps in the Labrador (Jackson et al., 2016) or Nordic236

Seas, with an unknown forced or intrinsic origin.237

The simulated and observed signals agree fairly well in the high frequency band,238

where predominant AMOC variations of ∼O(1 Sv) of the observed signal are consistently239

captured by the ensemble mean. We have found the leading forced EOF peaks at 2-3240

years, and interpret this as atmospherically forced AMOC interannual variability. This241

is consistent with the previous interpretation of the 2009-2010 event as atmospherically242

forced (Roberts et al., 2013). We note that all members are not phase locked to the at-243

mosphere because of the intrinsic dynamic of the ocean, with a contribution (σHFI = 0.8 Sv)244

that equals the forced signal at interannual time scales. Equivalently, a significant frac-245

tion of the interannual AMOC variability at 26.5◦N is chaotic, and thus the RAPID time-246

series represents only one possible trajectory among many. At interannual time scales,247

roughly half of the expected variability cannot be predicted in advance. These results248

provide a first estimate of the quantitative accuracy of the AMOC within numerical mod-249

els. Probabilistic estimates as in Chapron et al. (2018) might well represent a useful av-250

enue for further pursuit.251
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Grégorio, S., Penduff, T., Sérazin, G., Molines, J.-M., Barnier, B., & Hirschi, J.296

(2015). Intrinsic variability of the atlantic meridional overturning circulation297

–10–



manuscript submitted to Geophysical Research Letters

at interannual-to-multidecadal time scales. Journal of Physical Oceanography ,298

45 (7), 1929–1946.299

Jackson, L. C., Peterson, K. A., Roberts, C. D., & Wood, R. A. (2016). Recent slow-300

ing of Atlantic overturning circulation as a recovery from earlier strengthening.301

Nature Geoscience, 9 (7), 518.302

Kirtman, B., Power, S., Adedoyin, A., Boer, G., Bojariu, R., Camilloni, I., . . . others303

(2013). Near-term climate change: projections and predictability.304

Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., & Mann, M. E. (2005).305

A signature of persistent natural thermohaline circulation cycles in observed306

climate. Geophys. Res. Lett., 32 (L20708).307

Leroux, S., Penduff, T., Bessières, L., Molines, J.-M., Brankart, J.-M., Sérazin, G.,308
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Figure 1. Intrinsic-to-total variance ratio R =
σ2
I

σ2
T

of the simulated interannual-to-decadal

AMOC variability. R indicates the fraction of the low-frequency AMOC variability that is driven

by the chaotic internal ocean dynamics in the ensemble simulation (color contours every 0.1).

Gray contours indicate the simulated time mean AMOC, with a contour interval of 5 Sv (1 Sv =

106 m3s−1) and a thick contour for zero values. The black dashed line represents the location of

the RAPID array at 26.5◦N, and the black star indicates the depth of 1200 m used in Fig. 3.
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Figure 2. First (left) and second (right) Empirical Orthogonal Functions (EOFs) for the

ensemble mean AMOC (top), for the intrinsic AMOC variability (middle), and the Power Spec-

tral Density (PSD) function of the associated Principal Component (PC, bottom). The EOFs

have been normalized such that they contain the amplitude in Sv of the explained signal, and

the explained variance is shown on top of each panel. For the intrinsic component, the EOF and

associated spectra have been computed for each individual member and then averaged together.
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Figure 3. (Left) Time series corresponding to the variations of the northward AMOC trans-

port, the maximum of which occurs around 1200 m depth in our model. Individual ensemble

members are in light gray and the ensemble mean in black. The measured AMOC at the same

depth appears in red. All data have been low-pass filtered with a cutoff at 1 year. The first and

last years of data have been discarded due to side effects induced by the filter. (Right) Power

Spectral Density (PSD) of the forced (black) and intrinsic (green) component of the simulated

AMOC anomalies at 26.5◦N and 1200 m for the 50-yr long signal. Data have been high-pass fil-

tered and a seasonal cycle has been removed before the application of the 1-yr low-pass filter (see

text for details). First and last years have been discarded due to side effects induced by the filter.
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Figure 4. Regressed AMOC [Sv] in the latitude-depth space onto the AMOC time series at

26.5◦N and 1200 m for the forced (left) and the intrinsic (right) component. Statistical signifi-

cance has been assessed with a Monte Carlo approach by comparing the regression to that of a

randomly scrambled ensemble. We have randomly permuted the AMOC time series by block of

15 days and compute a regression. This process, which aims at removing autocorrelation in the

time series, is repeated 100 times. If the original regression is larger than 95% of the scrambled

ensemble regressions, it is considered as statistically significant. Regressions that are not statis-

tically significant are gray shaded. The black dashed line represents the location of the RAPID

array at 26.5◦N.
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