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ABSTRACT

The dynamics of current retroflection and rings shedding are not yet fully understood. In this paper, the authors

develop an analytical model of theAgulhas Current retroflection dynamics using three simple laws: conservation

of volume, momentum balance, and Bernoulli’s principle. This study shows that, for a retroflecting current with

a small Rossby number, this theoretical model is in good agreement with numerical simulations of a reduced-

gravity isopycnal model. Otherwise, the retroflection position becomes unstable and quickly propagates up-

stream, leaving a chain of eddies in its path. On the basis of these findings, the authors hypothesize that the

westward protrusion of the Agulhas retroflection and the local ‘‘zonalization’’ of the Agulhas Current after it

passes theAgulhas Bank are stable only for small Rossby numbers. Otherwise, the retroflection shifts toward the

eastern slope of theAgulhas Bank, where its position stabilizes due to the slanted configuration of the slope. This

study shows that this scenario is in good agreement with several high-resolution numerical models.

1. Introduction

a. General background

Recent investigations of the role of the Agulhas sys-

tem in the variability of the Atlantic meridional over-

turning circulation (AMOC) and the global climate

show that theAgulhas leakage variability can impact the

strength of the AMOC on several time scales (Weijer

et al. 2002; Knorr and Lohmann 2003; Biastoch et al.

2008a; Beal et al. 2011). In turn, the Agulhas leakage

itself strongly depends on the position of retroflection

(van Sebille et al. 2009).

According to Doglioli et al. (2006) and van Sebille

et al. (2010), 35%–45%of theAgulhas leakage is carried

within rings (the remainder is direct leakage and leakage

carried by filaments and cyclonic eddies). Observations

indicate that the leakage flux into the South Atlantic is

about 10–15 Sverdrups (Sv; 1 Sv[ 106m3 s21) (see Table

1.1 from van Sebille 2009; see alsoGordon 1986; Gordon

et al. 1987, 1992; Ganachaud and Wunsch 2000; Garzoli

and Goni 2000; Boebel et al. 2003; Richardson 2007).
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Therefore, the outflow via anticyclonic eddies is about

4–6 Sv.

Typically, Agulhas rings are shed at a frequency of 5–

6 yr21. As a rule, the retroflection protrudes westward

before shedding a recurrent eddy and abruptly shifts

eastward after shedding (Lutjeharms and vanBallegooyen

1988a; Dencausse et al. 2010a). According to Dencausse

et al. (2010a), the position of the Agulhas retroflection

typically moves from 158 to 178E during the eddy shed-

ding to 208 to 228E just after the shedding.

There were also periods of almost 6 months when no

shedding event was observed (e.g., Gordon et al. 1987;

Byrne et al. 1995; Schonten et al. 2000; Lutjeharms 2006;

van Aken et al. 2003; Dencausse et al. 2010a,b). This

increased length of the shedding period may be associ-

ated with a retroflection farther to the east (de Ruijter

et al. 2004). Lutjeharms and van Ballegooyen (1988b)

and Lutjeharms (2006) showed anomalous and more

occasional eastward shifts of the Agulhas retroflection

occurring two to three times per year with durations of

3–6 weeks. Also, very irregular, so-called early (up-

stream) retroflection events were observed in 1986

(Shannon et al. 1990) and 2000/01 (Quartly and Srokosz

2002; de Ruijter et al. 2004), when the Agulhas Current

retroflected east of theAgulhas Plateau. However, these

events are uncommon.

Often, the Agulhas Current protrudes westward from

the Cape of Good Hope. Such a necklike protrusion is

connected with the formation of a local ‘‘zonalization’’

of the Agulhas influx after it passes the Agulhas Bank

between 17.58 and 208E, as shown in Fig. 1 [adapted from
Beal et al. (2011, their Fig. 1) as a fragment], where the

zonalization and retroflection areas are indicatedbydashed

ellipses [see also a similar configuration in Lutjeharms

(2006, their Fig. 1.2)]. This configuration is the most fa-

vorable for Agulhas ring shedding because the necklike

protrusion is almost free of topographic effects, and the

eddies are shed directly into the South Atlantic. There-

fore, it is important to know under what conditions this

protrusion is stable, and when the Agulhas Current is

more likely to retroflect directly after passing the slanted

eastern slope of the Agulhas Bank.

b. Numerical background

The Agulhas retroflection dynamics have been studied

in realistic numericalmodels. According toBiastoch et al.

(2009), the retroflection occurs at 178E during shedding

and 238E (i.e., east from the Agulhas Bank) afterward.

Similar scenarios can be seen in the Backeberg et al.

(2009) and Tsugawa and Hasumi (2010) simulations.

In the 1/128 global Hybrid Coordinate Ocean Model

(HYCOM) (www7320.nrlssc.navy.mil/GLBhycom1-12/

agulha.html), the usual position of retroflection is nearly

208–228E during eddy shedding and 238–258E after shed-

ding, which is 48 eastward compared to the Dencausse

et al. (2010a) data. The aforementioned eastward shift is

probably due to theHYCOM’s inability to reproduce the

zonalization of the Agulhas influx. It is still not clear

which of the simulated parameters are responsible for this

inconsistency between observations and simulations.

We note, however, that the fine westward protrusion

configuration was simulated recently by Loveday et al.

(2014, see their Fig. 3).

c. Theoretical background

Widely accepted theoretical models indicate that

Agulhas rings are shed primarily because of inertial and

momentum imbalances. Nevertheless, the exact mech-

anism of shedding is still under discussion. For example,

according to Ou and de Ruijter (1986), the Agulhas

Current front, moving slowly southwestward, forms

a loop soon after separating from the coast, due to the

coastline curvature. The loop occludes and forms a ring,

whose shedding is accompanied by the instantaneous

eastward retreat of the front. This mechanism was fur-

ther discussed by Lutjeharms and van Ballegooyen

(1988a) and Feron et al. (1992).

A purely inertial shedding mechanism was proposed

by Nof and Pichevin (1996) and discussed by Pichevin

et al. (1999). According to this mechanism, ring shed-

ding from the retroflection area is necessary to circum-

vent the so-called retroflection paradox. Specifically, the

‘‘rocket force’’ caused by the westward-propagating

FIG. 1. Schematic figure of Agulhas retroflection and shed eddies.

Dashed ellipses show the areas of zonalization and retroflection.
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eddies balances the nonzero, combined zonal momen-

tum flux (or flow force) of incoming and outgoing cur-

rents. Nof and Pichevin (1996) did not address the

formation of the ring in the retroflection area and fo-

cused instead on the detaching phenomenon.

An alternative idea is that the momentum fluxes of

currents are compensated by the Coriolis force, which is

caused by the ‘‘ballooning’’ of the basic eddy (a generic

term to designate the retroflection area), a mechanism

suggested by Nof and Pichevin (2001) for the outflows

and elaborated further by Nof (2005) for the case of a b

plane.

However, Zharkov and Nof (2008a) pointed out

a ‘‘vorticity paradox’’; in the case of retroflecting cur-

rents, both the momentum and mass conservation

equations can only be satisfied for small Rossby num-

bers. To circumvent this paradox, the authors consid-

ered the incoming current retroflecting from a coastline

with a slant greater than a threshold value of ;158.
Zharkov and Nof (2008b) and Zharkov et al. (2010)

elaborated on the effect of coastal geometry on ring

shedding for 1.5-layermodels with slanted and ‘‘kinked’’

coastlines and showed that, in the case of a rectilinear

coast, there is a critical slant above which there is almost

no shedding. These results are in agreement with the

numerical runs in Pichevin et al. (2009).

Nevertheless, recent theoretical models still have

shortcomings. The basic equations are (i) the mass

conservation, (ii) the momentum balance, and (iii) the

Bernoulli’s principle. It is assumed that these three

equations can be satisfied together when (i) the basic

eddy radius is much larger than the widths of upstream/

downstream flows and significantly grows, and (ii) the

potential vorticity (PV) of the basic eddy is constant. In

fact, when the near-linear dynamics of approximately

geostrophic incoming/outgoing currents are trans-

formed into the dynamics of a radially symmetric basic

eddy of constant PV, the Bernoulli integral cannot be

conserved because an additional portion of energy is

required to raise the basic eddy’s nonlinear advection

[this forcing term is as strong as the Coriolis force in the

basic eddy momentum equation; see Eq. (17) below]. As

a consequence, there are a number of contradictions in

the previous analytical models. Two of these contra-

dictions are reported in appendix A.

d. Present approach

To address these contradictions, we develop a new

model of current retroflection and eddy shedding.

Contrary to previous models of retroflection, in which

the vorticity of the basic eddy, as well as the vorticity of

the incoming and outgoing currents, were treated as

constants, we allow the vorticity to vary. (Actually, in

the text, we consider the Rossby numbers characterizing

the relative vorticities, although, in principle, it does not

matter which type of vorticity we mean because the

Coriolis force is assumed almost constant at the scale of

retroflection area.) By doing so, we aim to overcome the

aforementioned paradoxes.

The main goal of this study is to use this model to

understand why the Agulhas Current retroflection

protrudes westward from the Agulhas Bank. We also

want to clarify the relation of this westward protrusion

to the ring-shedding event and establish a simple cri-

terion for the stability of each configuration of the

Agulhas Current.

The paper is organized as follows: In section 2, we

introduce the governing equations for the basic eddy

development and derive an analytical model of a zonal

retroflecting current. We also discuss the reasonable

intervals for the initial value of the current’s Rossby

number. In section 3, we compare this theoretical model

with a numerical model for several values of the Rossby

number. On the basis of this investigation, we propose

a criterion for the stability of the westward-protruding

configuration of the Agulhas Current being dependent

on its relative vorticity. In section 4, we confirm this

hypothesis using data from eddy-resolving numerical

models. Last, we summarize and discuss our results in

section 5. For convenience, we define all the variables

both in the text and in appendix E.

2. Theoretical model

In this section, we derive an analytical model of

Agulhas Current retroflection. We first describe the in-

coming and outgoing currents, then the basic eddy. All

these elements are then connected using three equations

expressing Bernoulli’s principle, the momentum bal-

ance, and the conservation of volume. We allow the

main variables of the model to vary in time and attempt

to describe their temporal evolution. Finally, we con-

sider the stability of this system and establish a criterion

for eddy shedding.

a. Description of the currents

Consider the situation depicted in Fig. 2; a boundary

current flows along a zonal coast (in the Southern

Hemisphere) and retroflects at some point. To describe

this system, we consider the Cartesian coordinate sys-

tem (x, y), where y5 0 marks the limit between the

incoming and outgoing currents, and x5 0 is placed at

the center of the basic eddy at t5 0 (a stagnation point

of the retroflection).

As in preceding papers by Nof et al., we use a reduced-

gravitymodel (the 1.5-layer shallow-water approximation).
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The incoming and outgoing currents of density r flow

above an infinitely deep, stagnant layer, whose density is

r1Dr. To avoid the ‘‘thickness paradox’’ (see appendix

A, section a), we assume that the thickness h of the

upper (active) layer vanishes outside the currents, that

is, h5 0 at y56L, where L denotes the widths of both

currents. This assumption can probably be justified by

the fact that the Agulhas Current carries much warmer

(although saltier) water from the tropical Indian Ocean,

implying that there occurs an additional pycnocline at

the interface between Agulhas Current water and sur-

rounding waters, and this pycnocline really outcrops at

the borders of the current [the border is strongly pro-

nounced, e.g., in Fig. 1 of van Sebille (2009)].We impose

a linear shear profile such that the velocity in the cur-

rents is given by

u52f0a0y , (1)

with a0 as the Rossby number of the currents and2f0 as

the linear approximation of the Coriolis parameter. The

full Coriolis parameter is f 52f0 1by (in the usual

b-plane approximation). The variation of f over a dis-

tance L is evaluated using a parameter

d5
bL

f0
. (2)

For a current of width L5 300 km and with f0 5
8:83 1025 s21 and b5 2:33 10211 m21 s21, we have

d5 0:08. Henceforth, we use this small parameter d when

we perform a Taylor expansion of a variable.

Away from the retroflection point in the positive x

direction, the meridional velocities in the currents

vanish, so the momentum equation in the meridional

direction is

fu52g 0
›h

›y
, (3)

with g0 5 gDr/r as the reduced gravity. From Eqs. (1) to

(3), one obtains

›h

›y
52

a0 f
2
0

g 0 y
�
12 d

y

L

�
. (4)

We integrate Eq. (4), retaining the first-order term in d:

h(y)5H2
a0 f

2
0

2g0

�
y22 d

2y3

3L

�
, (5)

whereH is the upper-layer thickness at y5 0. We adjust

H such that h vanishes at the borders of incoming and

outgoing currents, that is, at the leading order in d,

y56L. Therefore,

H5
a0 f

2
0

2g0
L2 . (6)

We can also introduce the deformation radius of the

currents

Rd 5

ffiffiffiffiffiffiffiffiffi
g 0H

p
f0

, (7)

so that Eq. (6) can be rewritten as

L5

ffiffiffiffiffiffi
2

a0

s
Rd . (8)

At the first-order approximation in d, we search L1 such

that h(L1 dL1)5 0. From Eqs. (5) and (6), we have

05
a0 f

2
0

2g0

"
(L1 dL1)

22L22 d
2(L1 dL1)

3

3L

#
, (9)

which results in L1 5L/3. It is easy to verify that

H(2L1 dL1)5 0 at the first order as well.

We then calculate the incoming and outgoing volume

fluxes Q and q according to

Q52

ðL(11d/3)

0
uh dy and q5

ð0
2L(12d/3)

uh dy .

(10)

Using Eqs. (1), (5), (6), and (8), we obtain

FIG. 2. Schematic diagram of the retroflection from a zonal coast

in the Southern Hemisphere. The hatched area indicates land. The

incoming flux Q flows westward, and the outgoing (retroflected)

flux q is directed to the east. The widths of the currents are L. The

bulge denotes the basic eddy. The squiggle arrows indicate its mi-

gration resulting from both the growth of the radius, which forces

the eddy away from the zonal wall, and from b, which forces the

eddy along this wall. The basic eddy migrates westward and de-

taches at some moment of time.
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Q,q5
f 30R

4
d

2g0

�
16

8

15
d

�
. (11)

Thus, at the leading order of approximation, the in-

coming flux Q scales with R4
d. For the typical Agulhas

Current parameters (Q5 70 Sv, f0 5 8:83 1025 s21 and

g0 5 0:02 m s22), we obtain Rd 5 45 km.

Here, we should note that d is a function of a0. It

follows from Eqs. (2) and (8) that

d5 «

ffiffiffiffiffiffi
2

a0

s
, (12)

where

«5
bRd

f0
(13)

is a constant small parameter and, for the Agulhas

Current conditions, «5 0:012.

As we see from Eq. (11), the net volume transport

T5Q2 q going to the eddies in the retroflection area is

nonzero only at the first order of d [i.e., scales like

O(dQ)] and therefore is only due to b. Using Eqs. (11)–

(13), it is expressed as

T5
16

15
dQ5

27/2«f 30R
4
d

15g0
a21/2
0 . (14)

Equation (14) implies that the leakage of a retroflecting

current is small compared to the incoming flux. This

affirmation is verified hereafter. For the Agulhas Cur-

rent parameters,

T5
1:25ffiffiffiffiffiffi
a0

p Sv. (15)

Note that we used the d-order approximation only for

the calculation of T. The use of the leading-order ap-

proximation for the other parameters is verified by

comparing our model outputs with numerical calcula-

tions (see section 3). In particular, keeping Q as a fixed

parameter in our further analysis, we can consider Rd to

be constant as well.

b. Description of the basic eddy

In the retroflection area, the incoming and outgoing

currents are connected through the basic eddy. At the

leading order of approximation, we assume that its shape

is circular, so that its dynamics can be described in a polar

coordinate system (r, u) boundwith themovement of the

basic eddy’s center. Following Nof and Pichevin (2001),

we express the basic eddy’s orbital velocity as

yu 5
a

2
f0r , (16)

with a twice the basic eddy’s Rossby number (we note

here that a5 1 characterizes a zero PV eddy). The radial

symmetry condition is

g0
›h

›r
5

y2u
r
2 f0yu , (17)

which corresponds to the momentum equation for the

azimuthal velocity in the new coordinate system. We

can compute the eddy thickness profile by integrating

Eq. (17) using Eq. (16) and the boundary condition

h(r5R)5 0 (since h vanishes at the basic eddy’s rim):

h(r)5
f 20
8g0

a(22a)(R22 r2) . (18)

The eddy volume is

V5

ð2p
u50

ðR
r50

hr dr du5
f 20
16g0

pa(22a)R4 . (19)

c. System of equations

At this stage, there are three unknowns that may vary

in time: a, a0, and R. The first two, being twice the

Rossby number of the basic eddy and Rossby number of

the currents, respectively, express the variation of vor-

ticity (see section 1d); and R(t) describes the de-

velopment of the basic eddy before its detachment from

the retroflection area. The variable L can be obtained

from Eq. (8), and we have Eq. (12) for d. The other

parameters are kept constant. Therefore, we need three

more equations to close the system. These equations

express the connection between the basic eddy and the

incoming/outgoing currents and are derived from three

basic principles we describe in the next subsections:

Bernoulli’s principle, the momentum balance, and the

conservation of volume.

1) BERNOULLI’S PRINCIPLE

This principle states that, for a steady state, the value of

B5 g0h1
juj2
2

(20)

is constant along a streamline. Thus, if we choose the

free streamline (line of outcropping between the ‘‘gray’’

area of nonzero h and ‘‘white’’ area h5 0 in Fig. 2), we

obtain

jyu(r5R)j5 ju(y56L)j . (21)
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Substitution of Eqs. (1) and (16) in Eq. (21) yields

aR5 2a0L . (22)

Using Eq. (8), we can rewrite this equation as

R5
23/2a1/2

0 Rd

a
. (23)

According to Eq. (23), there are two unknowns left:

a and a0. The time rate of the basic eddy evolution is

dR

dt
5

21/2Rd

a1/2
0 a

da0

dt
2

23/2a1/2
0 Rd

a2

da

dt
. (24)

2) MOMENTUM BALANCE EQUATION

The derivation of an equation expressing the balance

between the momentums of joint incoming/outgoing

currents and the Coriolis force of the growing basic eddy

is given in appendix B (see also Nof and Pichevin 2001).

Finally, we haveðL
2L

hu2 dy1 f0CyV5 0, (25)

where Cy is the basic eddy center propagation speed in

the meridional direction. Henceforth, we assume that

Cy 52dR/dt. At the leading-order approximation, the

calculation of the integral in Eq. (25) using Eqs. (1) and

(5) and substitution of Eq. (19) for V yield

dR

dt
5

215/2a1/2
0 f0R

5
d

15pa(22a)R4
. (26)

Equating Eqs. (24) and (26), we obtain

aa0

2

da0

dt
2a2

0

da

dt
5

a5f0
15p(22a)

. (27)

The physical interpretation of Eq. (27) is that the

momentums of incoming and outgoing fluxes are bal-

anced by the Coriolis force, owing to the off-wall

movement of the basic eddy center due to the growth

of its radius.

3) CONSERVATION OF VOLUME

The last equation that we use to close the system is the

conservation of volume:

dV

dt
5T . (28)

The expression for the left-hand side, dV/dt, is derived

from Eq. (19):

dV

dt
5

pa(22a)f 20R
3

4g0
dR

dt
1

p(12a)f 20R
4

8g0
da

dt
. (29)

After substituting Eq. (14) into the right-hand side of

Eq. (28), and Eqs. (29), (23), and (26) into the left-hand

side, we obtain

da

dt
5

a4f0
(12a)(15pa2

0)
(d2 2a) . (30)

Interpreting Eq. (30) physically, we expect da/dt to be

negative because the volume transport going to the basic

eddy growth is small, so that the strong growth of R

should be, for the most part, compensated for by the

decrease in a and therefore in the basic eddy thickness

[see Eq. (18)]. Hence, the ‘‘spreading’’ of the basic eddy

(i.e., increasing its diameter but decreasing thickness)

is the dominating process compared to its volume

increase—this is a principal difference of our model

from preceding ones. Also, we show in the next sub-

section that, despite the smallness of d, its account in

Eq. (30) is essential.

Now, Eqs. (27) and (30) [with substitution of Eq. (12)

for d] form a system of two ordinary differential equa-

tions (ODEs) that can be solved numerically. To do so,

we need to specify the initial value for the Rossby

number of the incoming flux:

a0(t5 0)5a0i , (31)

where i stands for the ‘‘initial condition.’’ We also as-

sume that R(t5 0)5L(t5 0), so the second initial con-

dition is

a(t5 0)5 2a0i , (32)

which is a direct consequence of Eq. (22). Also, ac-

cording to Eq. (12),

d(t5 0)5 d05 «

ffiffiffiffiffiffiffi
2

a0i

s
. (33)

The range of validity of a0i is discussed in the next

subsection.

d. Stability of the system

We just derived a system of equations describing the

evolution of a retroflecting current and the basic eddy.

Let us recall the hypothesis made to obtain the final set

of equations.

The transport is accurate if the value of d is small, that

is, the variation of the Coriolis parameter f is small

compared to its average value2f0. This condition limits
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the width of the incoming current to L5 400 km so that

d remains smaller than 0.1.

The model is also valid under the assumption of

a small Rossby number a0 for the incoming current.

Here, we remind the reader [see our comments for Eqs.

(27) and (30)] that the basic eddy radius should grow to

ensure the balance between the Coriolis force and the

momentum forces of the currents. The radius can grow

on account of both mass flux from the currents and

spreading of the basic eddy. However, according to Eq.

(8), the adaptation of the system to the basic eddy for-

mation requires the alteration of the currents’ vorticity,

implying the change in the widths of the currents. To be

more precise on the limit of validity of the model, we

introduce the nondimensional function characterizing

the relation between these two processes:

S(t)5
dL

dt

�
dR

dt
, (34)

which corresponds to the ratio of the time rates of L and

R change. For our convenience, we also introduce

S0 5 S(t5 0). The situation where S. 1 corresponds to

the case where the basic eddy expands slower than the

width of the currents, a situation that is physically un-

acceptable. Henceforth, we refer to S0 , 1 as the rea-

sonable interval and S0 . 1 as the unreasonable interval.

To obtain an analytical value of S0, we expand the solu-

tionsa(t),a0(t), and d(t) in the Taylor series around t5 0.

After some algebra introduced in appendix C, we obtain

S05 11
2a0i 2 d0(12a0i)

a0i(12 2a0i)
. (35)

It is seen from Eq. (35) that, if d0 5 0 (or b5 0), S0 is

more than 3 for any value of a0i, tending to infinity at

a0i 5 0:5. Physically, this means that the widths of in-

coming and outgoing flows increase faster than the ra-

dius of the basic eddy. Reasonable values of a0i should

be chosen such that S0 , 1. From Eq. (35), we conclude

that a0i should be less than a0i* , which is the root of

2a0i 1 d0(a0i 2 1)5 0. (36)

For small values of a0i, we obtain the condition

d0. 2a0i . (37)

This is an important condition that defines the limit of

validity of the model, and we make use of it henceforth.

Using Eqs. (37) and (33), we obtain an estimate for the

upper bound of reasonable values of a0i:

a0i
* 5

�
«2

2

�1/3

. (38)

In section 3, we compare the solutions of the system of

Eqs. (27) and (30) with numerical simulations. The goal

is to investigate (i) whether a0i ,a0i* is indeed a rea-

sonable condition, (ii) what happens in simulations of

our models and numerics when a0i is inside and/or out-

side this interval, and (iii) whether or not we can extend

this interval.

e. Eddy-shedding criteria

We finish our theoretical analysis with some consid-

erations on the conditions of the basic eddy detachment

from the retroflecting current.

1) FIRST CRITERION

To be shed, the ring should be large enough to escape

the front propagating behind it. Calculating the average

front speed

jCfrj5
TðL

2L
h dy

, (39)

we obtain

jCfrj5
2

5
bR2

d . (40)

Moreover, according to Nof (1981) and Zharkov and

Nof (2008b), the propagation speed for the open ocean

lenses is

Cx52
abR2

12
. (41)

Using Eq. (23) for the value of R and equating jCfrj [Eq.
(40)] with jCxj [Eq. (41)], we obtain the condition of the

eddy detachment:

a5
5

3
a0 . (42)

Remember that, initially, a5 2a0, and, according to our

simulations (described in section 3), both a and a0 de-

crease with time. However, for Eq. (42) to be satisfied at

some moment of time, a should decrease faster. As we

show in appendix C, this occurs in a reasonable interval

of a0i (when S0 , 1).

2) SECOND CRITERION

An alternative choice would be equating the currents’

frontal velocity with the eddy rear front velocity. As

seen in Fig. 3, the zonal propagation speed of the basic

eddy rear front changes from jCxj for u56p/2 to

jCx 2Cyj for u5 0, where u is the angle in the polar

coordinate system. The average rear front speed is
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jCrfj5
�����Cx2

1

p

ðp/2
2p/2

Cy cosu du

�����5
����Cx2

2

p
Cy

���� . (43)

Equating jCrfj [Eq. (43)] with jCfrj [Eq. (40)] and using

Eq. (41) forCx andEq. (22) for2Cy 5 dR/dt [see section

2c(2)], we obtain

a0

3a
2

1

5
5

4a3

15p2da2
0(22a)

. (44)

Since both a and a0 are less than one and we consider

the case where a decreases faster than a0, the right-hand

side of Eq. (44) is expected to decrease quickly and

become less than one, while the left-hand side grows and

becomes positive and of order one. Therefore, we expect

Eq. (44) to be satisfied at some time (the second crite-

rion thereafter).

We end the development of the theoretical model

here. In summary, the time evolution of the system of

incoming and outgoing currents and the basic eddy in

the retroflection area are characterized by Eq. (8) for L,

Eq. (11) for Q and q in terms of Rd, Eq. (12) for d, Eq.

(23) for R, and a system of Eqs. (27) and (30) for a and

a0 with initial conditions [Eqs. (30) and (31)]. The in-

stant of the eddy detachment is defined by Eqs. (42)

(first criterion) or (44) (second criterion). We also

showed that the solution of the system has physical

meaning when initially the parameter a0 does not ex-

ceed the value defined by Eq. (38). In the following

section, we proceed to time integrations and compare

them to a 1.5-layer shallow-water model.

3. Numerical simulations

In this section, we compare the theoretical model

developed in the previous sectionwith several numerical

simulations. We use a modified version of the Bleck and

Boudra (1986) reduced-gravity isopycnal model with

a passive lower layer and the Orlanski (1976) second-

order radiation conditions for the open boundary.

a. Model setup

The parameters are g0 5 0:02m s22, f 5 8:83 1025 s21,

andQ5 70 Sv. The other parameters are listed inTable 1.

We either use a regular value for b (2:33 10211 m21 s21)

or amagnified value for b (63 10211 m21 s21). The initial

condition a0i is taken between 0.04 and 0.25. The size of

the domain is adjusted so that the boundary current re-

mains away from the influence of the boundary of the

domain.

The northeastern section of the domain is filled by

land, and the position of the corner of the coastline is

given in Table 1. We use the free-slip boundary condi-

tion at the ‘‘coastal’’ walls.

The spatial resolution isDx5Dy5 5 km; the time step

is 30 s. We use a Laplacian viscosity coefficient

n5 500m2 s21 (the minimal value for the stability of

long time simulations). Such a choice of parameters is

adequate because the diffusion speed (n/Dx) is 0.1m s21,

which is small compared to the rings’ orbital speed (of

the order 1m s21). Our simulations are significantly

nonlinear since, according to Dijkstra and de Ruijter

(2001a,b), viscous effects become dominant when

n5 1650m2 s21 (for their forced model of Agulhas ret-

roflection). This conclusion is also in agreement with

Boudra and Chassignet (1988).

All the simulations are run for more than 700 days and

initialized with a fully retroflecting current at t5 0. We

use an open-channel configuration with both the in-

coming current (adjacent to the zonal wall) and the

outflow having streamlines parallel to the zonal wall.

FIG. 3. Schematic diagram of zonal propagation speed of the

basic eddy rear front jCx 2Cy cosuj (rectilinear arrows). Because
Cy 52dR/dt, the rear front speed changes from jCxj at u56p/2 to

jCx 2Cyj at u5 0, where u is the basic eddy polar angle. In Eq.

(43), jCrfj is calculated as an average of this speed over the rear

semicircle bordering the basic eddy. Also, jCfrj is the currents’

frontal speed. The squiggle arrow shows the direction of jCyj for the
basic eddy (not points at its rim).

TABLE 1. Parameters used in the model.

Experiment b (m21 s21) a0i

Domain

size (km2)

Coastline

corner (km)

1 2:33 10211 0.04 4800 3 1600 (3500, 1200)

2 2:33 10211 0.1 3200 3 1600 (1000, 1000)

3 63 10211 0.1 3200 3 1600 (1000, 1000)

4 63 10211 0.25 3200 3 1600 (1000, 1000)
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The initial cross-channel velocity profile is linear, and

the thickness profile is parabolic. The inflow and outflow

are connected by circular streamlines. The ‘‘center’’ of

retroflection is initialized at x5 1000 km [x5 2400 km for

experiment (expt) 1].

b. Snapshots of the numerical simulations

In Figs. 4–7, we plot the snapshots of the four exper-

iments listed in Table 1. The time intervals between

these snapshots are 150, 50, 50, and 10 days, respectively.

We adjust these intervals according to the eddy-

shedding periods in each experiment (several hundred

days for a0i 5 0:04, 170–180 days for a0i 5 0:1, and 30–35

days for a0i 5 0:25).

The figures show the upper-layer contours through

100-m increments. Some contours are marked in meters.

The scales on the coordinate axes are in kilometers.

In all these experiments, at least one eddy forms and

detaches from the current.We note that the position and

the propagation speed of detached eddies do not change

significantly as we move the meridional wall relative to

the retroflection, even in the case when the retroflection

is strongly protruding into the ‘‘open ocean.’’

c. Comparison with the analytical model

Figures 8–11 show the comparison of the results of our

theoretical model with the outputs of the corresponding

numerical model for the four experiments (see Table 1).

The curves of a and a0 (solid lines in Figs. 8a, 9a, 10a,

and 11a) are obtained by integrating the system of Eqs.

(27), (30), and (12) using a fourth-order Runge–Kutta

method. They can be directly compared to the curves of

a and a0 obtained in the numerical model and fitted by

polynomials of degree 5 (dashed lines in Figs. 8a, 9a, 10a,

and 11a). In the latter case, these values are obtained by

dividing the averaged values of the vorticity by the

Coriolis parameter.

Similarly, we plot with solid lines (theoretical model)

and dashed lines (numerical model) for R and theoret-

ical lines for L in Figs. 8b, 9b, 10b, and 11b; 2Cfr, 2Cx,

and2Cy in Figs. 8c, 9c, 10c, and 11c; and2Cfr and2Crf

in Figs. 8d, 9d, 10d, and 11d. (In appendix D, we explain

the plotting of numerics in detail and give an example of

a plot incorporating individual data points for Fig. 10.

We also plot a numeric curve for L there; the reason we

do not do it in all the Figs. 8–11 is discussed below in

section 3d.)We restrict the comparison to a time interval

defined by the instant where the first eddy detaches from

the current. Indeed, after this event, the system theo-

retically returns to its initial condition (which is not the

case for the system of ODEs that has to be manually

reset). However, the initialization of our numerical

simulations is not reproducible. After the eddy shed-

ding, the new initial value of a0 (for the development of

the next eddy) is not quite clear in numerics since, owing

to viscosity, the process of shedding is shadowed (i.e.,

the system does not return to the initial condition in-

stantly after shedding the first eddy, and it is not clear

how to define the exact instant for starting the formation

of the next one). To define the eddy detachment periods,

instead of solving Eqs. (42) and (44), we consider the

intersection of2Cfr and2Cx (Figs. 8c, 9c, 10c, and 11c)

FIG. 4. Snapshots of numerical simulations (expt 1: a0i 5 0:04, b5 2:33 10211 m21 s21).
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and2Cfr and2Crf (Figs. 8d, 9d, 10d, and 11d). Note that

we derived Eqs. (42) and (44) by equating jCfrj with jCxj
and jCrfj, respectively.
In Fig. 8, we compare the two models for the config-

uration of expt 1 (a0i 5 0:04). We find an excellent

agreement in both a and a0 (Fig. 8a) and2Cfr and2Cy

(Fig. 8c). The theoretical plot of R(t) (Fig. 8b) looks like

‘‘time-averaged’’ numerical data, so the agreement is

adequate as well; the value of the radius in the theo-

retical model is overestimated (10%) compared to the

numerical model. In Fig. 8b, we see that R grows from

300 km initially to 550 km after 1000 days, whereas L is

almost constant. This behavior coincides with S, 1 (see

section 2d), which is in the interval of validity of our

model. The lower panels show that the period of de-

tachment should be about 210–260 days, according to

the first criterion (Fig. 8c), and 320–250 days, according

to the second criterion (Fig. 8d). The numerical simu-

lation suggests a higher value of 800 days (probably as-

sociated with the viscous ‘‘jamming’’ of the first eddy in

the numerical simulation). (Also, the simulation probably

does not perform the ‘‘complete’’ separation owing to

the viscosity and the eddy spreading kind. Instead, a

‘‘numerical quasi separation’’ occurs, when the maximal

depth of the upper layer in the ‘‘neck’’ between eddies is

about 10 times less than the depth of the eddy itself.)

In Fig. 9, we compare the results of expt 2 (a0i 5 0:1).

The variations of a are well captured by the theoretical

model, whereas a0 is underestimated (Fig. 9a). From

Fig. 9b, we see L grows faster than R (i.e., S. 1), which

means we might be outside the validity range of our

model. Also, the agreement between the theoretical and

experimental curves in Figs. 9c and 9d is worse than for

expt 1 (Fig. 8).

To remain in the validity range, we used a magnified

value of b (expt 3). The results of this experiment are

plotted in Fig. 10. In this case, we have a fairly good

agreement for both a and a0. In Fig. 10b, we see that the

growth rate of R and L is comparable during the first 50

days (S is approximately one). In other words, a0i ex-

ceeds a0i* but not significantly. After 50 days, R keeps

growing while L remains stable (S, 1). According to

this behavior, we define a ‘‘transient’’ interval where

1# S0, 2. (45)

Unfortunately, the values of 2Cx (Fig. 10c) and 2Crf

(Fig. 10d) in the theoretical model are significantly

FIG. 5. Snapshots of numerical simulations (expt 2: a0i 5 0:1, b5 2:33 10211 m21 s21).
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larger than in the numerics, probably because of the

viscous effects (here we note that, in our preceding in-

vestigations, the b-simulated eddy propagation speed in

the open ocean was about two times or more lower in

numerics than that predicted by theory). For this case,

the theoretical curves of 2Cx and 2Cfr (Fig. 10c) and

2Crf and2Cfr (Fig. 10d) do intersect, showing the values

of the detachment period according to our first and

second criteria. The numerical curves rather touch each

other, probably because of the fitting errors.

The results of expt 4 (a0i 5 0:25) are plotted in Fig. 11.

While the tendency for a is correctly captured by the

theoretical model, a0 is strongly underestimated

(Fig. 11a). The values of current width L increase

much faster than values of the basic eddy radius R

(see orange and blue solid lines in Fig. 11b), at least at

the initial stage of the basic eddy development, corre-

sponding to S0 . 1. The theoretical curves of 2Cx and

2Cfr (Fig. 11c) and 2Crf and 2Cfr (Fig. 11d) do not

intersect, implying that the shedding criteria [Eqs. (42)

and (44)] are notmet. This is not in agreement with Fig. 7,

where we see at least two eddies shedding in 60 days. The

experimental curves do intersect and predict the de-

tachment period of about 16 days by both criteria, but the

agreement between theoretical and experimental curves

is poor.

d. Physical interpretation

On the basis of our comparisons, we suggest that,

without loss of generality, the agreement of our theo-

retical model with numerics can be characterized by the

values of S0 instead of S(t). This agreement is strong for

S0 , 1 (reasonable interval), moderate for 1# S0 , 2

(transient interval), and weak for S0 . 2 (unreasonable

interval). For convenience, we introduce a0i** as a value

of a0i at which S0 5 2. Figure 12 shows the plots of S0
versus a0i for vanishing « (i.e., f plane) and regular and

magnified b. The Roman numerals I, II, and III denote

reasonable, transient, and unreasonable intervals, re-

spectively. Based on Fig. 12, we conclude that a0i 5 0:04

(expt 1) is exactly at the border between reasonable and

transient intervals for regular b. The value of a0i 5 0:1

(expts 2 and 3) falls into the transient interval only for

magnified b and in the unreasonable interval for a reg-

ular value of b. The higher value of a0i (expt 4) is in the

unreasonable interval.

We suggest that, when a0i is in the unreasonable in-

terval, large values of S0 indicate that the Coriolis force

FIG. 6. Snapshots of numerical simulations (expt 3: a0i 5 0:1, b5 63 10211 m21 s21).
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momentum of a single shed eddy is still insufficient to

balance the momentums of incoming and outgoing

fluxes. Therefore, the shedding of several rings during

the period defined by Eq. (42) (first criterion) or Eq.

(44) (second criterion) is required to resolve the ret-

roflection paradox. Indeed, as we can see from nu-

merics for expts 2 and 4 (Figs. 5, 7), the retroflection

does not stay at the same location after shedding the

first eddy. Rather, it propagates upstream, forming

a chain of eddies on its path. (This is the reason we

avoided plotting the numerical values of L; it is not

quite clear what is the width of the current that is

gradually transforming into eddies, for which L has no

sense.) The larger the theoretical value of S0, the faster

is this upstream propagation of the retroflection. So,

the retroflection of a zonal current under these condi-

tions looks unsteady. We assume that the retroflection

of the jet flowing along a slanted coast is more stable

because, in this case, smaller current momentums need

to be balanced by the basic eddy Coriolis force mo-

mentum. In addition, eddies (with finite radii) can ‘‘fill’’

only a very limited area between incoming and out-

going currents. Conversely, when a0i is in the reason-

able interval, the shedding of each recurrent eddy

occurs approximately at the same position, and the

shed eddies propagate westward (see Fig. 4). So, the

reasonable and unreasonable intervals of a0i can be

reclassified ‘‘stable’’ and ‘‘unstable,’’ respectively.

Our main hypothesis is that the unsteadiness of the

zonal current retroflection with insufficiently small rel-

ative vorticity could cause the Agulhas retroflection to

shift eastward from the open South Atlantic basin to

some location east of the Agulhas Bank, where the in-

coming current flows along the slanted continental shelf.

This hypothesis is based on the fact that, in our numer-

ical simulations, the retroflection propagates upstream

when the Rossby number falls into the unstable interval.

4. Comparison with more realistic numerical
models

In this section, we apply the results obtained in the

previous sections to the interpretation of the realistic

numerical model simulations.

We first consider the study by van Sebille et al. (2009).

The authors investigated the relation between the

Agulhas retroflection position and the magnitude of the

Agulhas leakage to the South Atlantic. The 1/108 ocean

FIG. 7. Snapshots of numerical simulations (expt 4: a0i 5 0:25, b5 63 10211 m21 s21).
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numerical model (Biastoch et al. 2008a,b) was used. The

retroflection location was defined based on the sea sur-

face height isolines. The authors show that the Agulhas

leakage is a function of the latitude of the retroflection

point (see their Fig. 9). This figure is redrawn here as

Fig. 13, upper panel. It shows the Agulhas leakage

transport versus the position of the Agulhas retroflec-

tion. Van Sebille et al. (2009) highlighted a significant

correlation between these two variables.

Assuming that approximately 40% of Agulhas leak-

age is carried by rings (Doglioli et al. 2006; van Sebille

et al. 2010), we multiply the values of TAL by 0.4 to

obtain approximate values of T5Q2 q and then cal-

culate a0 using Eq. (15). The results are shown in Fig. 13,

lower panel. Here, as in Fig. 12, the Roman numerals

I, II, and III denote stable, transient, and unstable in-

tervals, respectively, for the regular value of b. The

borders between intervals are the dashed–dotted lines,

where a0 5a0i* and a0 5a0i** . The blue diamonds cor-

respond to the red circles in the upper panel (data from

van Sebille et al. 2009), and the red line corresponds to

the linear regression. If the regime is nearly stable (a0i is

nearly a0i* ), the value of a0 does not significantly change

with time, as seen in Fig. 8. Therefore, we can compare

the theoretical values of a0i* and a0i** directly with ob-

tained values of a0. Most of the experiments with the

retroflection location to the west of the Cape of Good

Hope (;188E) are concentrated in the stable interval

(I); the regression line shows that characteristic values of

the Rossby number are in the stable interval when the

location is west of 168E and in the unstable interval when

the location is east of 198E, which is close to the Agulhas

Bank. This confirms our hypothesis; the retroflection is

likely to shift toward a slanted coast when the Rossby

number gets into the unstable interval.

Last, we consider the 1/128 global HYCOM simula-

tion (www7320.nrlssc.navy.mil/GLBhycom1-12/agulha.

html). As could be inferred from the animation, the

typical period of the Agulhas basic eddy rotation is

about 4 days. Therefore, the characteristic value of a is

2p/(43 86 4003 f0) ’ 0:2, so that a0 is not less than 0.1,

which is larger than values of a0i* and a0i** . Hence, ac-

cording to our hypothesis, the zonal flow configuration

for the retroflection is unstable, which is in agreement

with the fact that, in simulations, the current retroflects

FIG. 8. Plots of (a) a, a0; (b) R, L; (c) 2Cx,2Cy,2Cfr; and

(d) 2Cfr,2Crf for expt 1 (conditions of Fig. 4). Solid lines are the

theoretical model. Dashed lines are fitted numerical results.

FIG. 9. As in Fig. 8, but for expt 2 (conditions of Fig. 5).
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directly from the slanted eastern slope of the Agulhas

Bank.

5. Conclusions and discussion

a. Summary

In this paper, we have presented a new model of

a zonal current retroflection and eddy shedding. In

contrast to the preceding models of retroflecting cur-

rents, this one satisfies, (i) the mass conservation equa-

tion, (ii) the momentum balance equation (i.e., to

resolve the retroflection paradox), and (iii) the time-

dependent, altered Bernoulli’s principle (i.e., the conti-

nuity of velocity along the free streamline bounding the

currents and the retroflection area). Our main assump-

tion is that the net mass flux going into the eddies is only

due to the b effect, circumventing the thickness paradox

by avoiding the discontinuity of the upper-layer thick-

ness between the rim of the retroflection area (basic

eddy) and the incoming current at the zonal coastline

(see appendixA). In this case, the increase in the basic eddy

volume is very weak, so the momentum of the Coriolis

force due to the basic eddy growth cannot compensate

for the net momentums of incoming and retroflected

currents. However, the vorticity variation spreads the

basic eddy even without a significant volume increase, so

that the center moves off the wall much faster than it

does with a constant PV (i.e., owing only to the basic

eddy volume growth), which is enough to balance the

current momentums.

As shown, the system of aforementioned equations

yields reasonable solutions for small values of the

Rossby number (defined in the text as the stable interval).

In this case, we obtained good agreement between our

theoretical solutions and numerical simulations (Figs. 8,

10). Otherwise, the Rossby number is in the unstable

interval. In the theoretical model, this unstable interval

is characterized by an unphysical increase of the width of

the incoming and outgoing currents (remember that, in

our problem statement, we assumed the incoming mass

flux and the current velocity to be constant). In this case,

the agreement between our model and numerics sig-

nificantly deteriorates (Figs. 9, 11). In numerics, we ob-

serve a strong eastward shift of the retroflection and the

formation of a chain of eddies in its path (Figs. 5, 7). Based

on these findings, we hypothesize that the retroflection of

a zonal current becomes unstable for larger Rossby

FIG. 10. As in Fig. 8, but for expt 3 (conditions of Fig. 6).
FIG. 11. As in Fig. 8, but for expt 4 (conditions of Fig. 7).
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numbers and therefore the retroflection point is ex-

pected to shift toward the slanted coast (in the case of

the Agulhas Current and the eastern slope of the

Agulhas Bank).

This hypothesis is in agreement with the data of van

Sebille et al. (2009). Using their data and Eq. (15), we

show (Fig. 13) that the Rossby number most likely gets

to the stable interval (defined in our theoretical model)

when the Agulhas retroflection is located west of the

Cape of Good Hope and to the unstable interval when

it is located near and east of the Agulhas Bank. It is

possible that some eddy-resolving models do not sim-

ulate the local ‘‘zonalization’’ of the Agulhas incoming

flux after it passes the Agulhas Bank (which, in turn,

can lead to underestimation of the leakage into the

Atlantic) because the Rossby number is overestimated

numerically, possibly because of an underestimation of

mesoscale processes or a low viscosity value. The vis-

cous friction is probably the main cause of the vorticity

variation—we leave this mechanism as a subject for

future investigations.

b. Another physical interpretation

Our analysis of the Agulhas Current uses the Rossby

number as the main variable. However, one can also

describe the stability of the current using dimensional

variables, namely, the width of the currents L and the

deformation radiusRd. In fact, Eq. (35) can be rewritten

with dimensional parameters in the form

S05 11
4f0R

2
d 2bL(L22 2R2

d)

2f0R
2
d(L

2 2 4R2
d)

L2 . (46)

A plot of S0 as a function of L and Rd with f0 5 8:83
1025 s21 and b5 2:33 10211 m21 s21 is shown in Fig. 14.

The gray area corresponds to the unstable domain. We

hypothesize that for these values of L and Rd, the

Agulhas Current must retreat in a region where the

coast is slanted. The white area is the stable region. For

the corresponding values of L and Rd, the Agulhas

Current can shed an eddy and remain in the zonal area.

The limit of stability S0 5 1 (at leading order of ap-

proximation) can be reformulated with dimensional

parameters:

L35
4R2

df0
b

, (47)

FIG. 12. Plots of S0 vsa0i for «5 0 ( f plane), regularb («5 0:012),

and magnified b («5 0:031). The Roman numerals I, II, and III

denote reasonable (stable), transient, and unreasonable (unstable)

intervals, respectively.

FIG. 13. (top) The 95-day, binned, float-determined Agulhas

leakage transport TAL vs westward extent Fw. The black line is the

best linear fit, and the gray area indicates the estimated confidence

band so that 90% of the area points fall within the area. The corre-

lation between the two datasets is 20.48, which is significant at the

90% confidence level. Adapted from van Sebille et al. (2009). (bot-

tom) Values of a0 calculated using Eq. (15) where T5 0:4TAL (blue

diamonds). The red line shows the best linear fit. Stable, transient, and

unstable intervals are shown by numerals I, II, and III, respectively.
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or, in view of Eq. (11),

L5

 
32g0Q
b2f0

!1/6

. (48)

Using Fig. 14, we give a new interpretation of the ret-

roflection position in realistic models; we anticipate that

a wider Agulhas Current can help stabilize the current

and give it the opportunity to elongate in the zonaliza-

tion region. Since the viscosity effect is a possible

mechanism of the vorticity alteration (decrease in a0),

this widening of the current can be achieved by in-

creasing the viscosity coefficient. Also, according to

Fig. 14, a lower value deformation radius would help sta-

bilize the Agulhas Current, although in realistic assimila-

tive runs like HYCOM simulations, the definition of Rd is

probably not as clear as in our reduced-gravity model.

A few comments should be made here. First, the wid-

ening of the current probably implies decreasing the cur-

rent velocity. However, according to Eqs. (1) and (8), the

velocity at the borders of the currents reaches
ffiffiffiffiffiffiffiffi
2a0

p
f0Rd,

and, using Eqs. (11), (12), and (38), we conclude that the

maximum velocity that can be reached when a0i is the

upper boundary of the stable interval should be

umax5 (2«)1/3f0Rd 5

�
4bg0Q

f0

�1/3

, (49)

which is 1.1m s21 for the Agulhas Current parameters

used in our model. Overall, this value is reasonable. We

do not consider the entire current as a part of Indian

OceanGyre, but focus only on the area not far upstream

from the retroflection. According to Duncan and

Schladow (1981), the current velocities not far from

the Agulhas retroflection are in excess of 1.5m s21.

Gordon et al. (1987) gave an estimate of about 1.1m s21.

Therefore, the velocities are usually only a bit above the

upper boundary of the stable interval, implying that the

westward protrusion of the retroflection area is not as

common as the retroflection east of Agulhas Bank but

nevertheless is not rare.

Second, the viscosity in numerical models can affect

the Agulhas leakage in different ways. Although, as

we mentioned before, the viscosity increases the

widths of the currents in our simulations, the main

effect we consider is protrusion of the retroflection

toward the South Atlantic, possibly resulting in the

increase of Agulhas leakage, which is carried by the

rings. We do not talk here about any other parts of

leakage. On the other hand, Weijer et al. (2012) also

show that, in their CCSM4 numerical model, the high

viscosity simulation widens the current and indeed

overestimates the Agulhas leakage. However, the

reason is that a simulation of the Agulhas Current that

is too viscous lacks the inertia necessary for retro-

flection and ring shedding. Instead, outflow to the

South Atlantic is mainly due to direct leakage through

a viscous sublayer. Such a scenario has no relation to

the subject of our paper.

Overall, the current widening is due to an internal

process that regulates the vorticity, which is not neces-

sarily the effect of viscosity.

Also, we obtain from Eqs. (15) and (38) that the

minimal eddy-carried Agulhas outflow necessary for the

retroflection protrusion is

Tmin5 1:253 21/6«21/35 6:1 Sv. (50)

c. Model applicability

This model can only be applied to the dynamics of

Agulhas Current retroflection. Other retroflecting cur-

rents, such as the Brazil Current, North Brazil Current,

and East Australian Current, have no zonalization be-

cause they retroflect directly from slanted coasts. Also,

our present approach is not valid for meddies (Pichevin

and Nof 1996) because, in that situation, the incoming

and outgoing flows are separated by a wall, and the

upstream retreat of the retroflection area is impossible.

The foremost shortcoming of the present model is

that, for a reasonable Rossby number (getting into

a stable interval), eddies are unrealistic (with radii

about 300 km and more) and the period of shedding is

extremely long (one or even several years). For a higher

value of b, we obtain an eddy detachment period of

about 100 days, which is acceptable. The simulation with

FIG. 14. Plot of stability/instability showing S0 as a function of the

width of the current L and the radius of deformation Rd. The gray

area is the unstable region, while the white area is the stable region.
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magnified rather than regular b seems closer to reality

because viscous damping compensates for the artificial

acceleration. Concerning the large radii, observed radii

are usually measured as distances between the center

and point(s) of maximum radial velocity. The modeled

linear distribution of radial velocity in eddies is ideal-

ized, and, naturally, the velocity profile is smoothed at

the eddy’s periphery, which leads to underestimation of

the eddy radius.

As for now, it is not quite clear how to describe the

direct leakage and filaments in the momentum equa-

tions, so, in our theory, we assume that the net mass flux

(T5Q2 q) is completely converted into rings. Never-

theless, we test our hypothesis with observational data,

assuming that 40% of the leakage is carried by rings. A

possible explanation for this contradiction is that in

some area close to the retroflection, the eddy shedding is

probably the primary (and overwhelming) mechanism

for westward transport of the water. At the same time,

the direct leakage and filaments can be formed in a larger

area containing both incoming and outgoing fluxes.

In our model, we focus only on the basic eddy de-

tachment time scale and do not consider periodic so-

lutions that would allow tracing the possible retreat at

longer time scales. In the future, it would be interesting to

develop the theoretical model aimed on the description

of the upstream propagation of the retroflection.

Finally, our theory is developed only for lenses. Ap-

plying this theory to a finite-thickness upper layer is

difficult in that, if the thickness is significant, increased

eddy volume due to radial growth cannot be compen-

sated for by the decrease in vorticity (and eddy thick-

ness). This, in addition to the viscous effect, can cause

the gradual collapse of the initialized 1.5-layer structure

in numerical simulations.
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APPENDIX A

Contradictions in Previous Models of Retroflecting
Currents

In this appendix, we describe two paradoxes (or in-

consistencies) that were encountered in previous models

of retroflections.

a. Thickness paradox on an f plane

Equation (28) suggests that Q2 q. 0 for a growing

basic eddy. However, since we assume both incoming

and outgoing fluxes are approximately in geostrophic

balance (on an f plane), we have

u’2
g0

f0

›h

›y
(A1)

inside both. Therefore, by definition of incoming and

outgoing fluxes,

Q2 q52

ðL
2L

uh dy ’ g0

2f0
[(h2)jy52L2 (h2)jy5L] ,

(A2)

and, to allow the eddy growth, we should have

hjy5L . hjy52L. According to Bernoulli’s principle, the

thickness at the eddy rim is equal to hjy5L, implying

that, at the point where the eddy rim detaches from the

wall, a jump in the thickness occurs (or, at least, the

zonal gradients of both thickness and velocity are un-

naturally large, which, in turn, leads to strong distor-

tion of the basic eddy structure). This is a common case

for all the preceding models of retroflection. We call

this the ‘‘thickness paradox.’’ To resolve it, we suggest

considering the retroflection on a b plane instead of an

f plane and assuming that the net flux going to the

eddies in the retroflection area is only due to b.

b. Slowly varying problem statement

According to the mass conservation and momentum

balance principles, the basic eddy develops by analogy

with the ballooning outflow bulge. Its volume V in-

creases linearly with time, and its radius growth isO(t1/4)

[Nof and Pichevin 2001, Eq. (3.7)]. Under the assump-

tion of constant vorticity, the basic eddy orbital velocity

growth is O(t1/4) too. Because the basic eddy kinetic

energy is proportional to Vy2u, its growth is O(t3/2), im-

plying that the energy flux from the current into the

basic eddy is not constant but essentially nonlinear in
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time. This conclusion contradicts the energetic sense

of Bernoulli’s principle in terms of the slowly varying

problem statement.

APPENDIX B

Derivation of the Momentum Balance Equation

Taking into account the continuity equation, we write

the momentum equation in the along-coast direction in

the moving coordinate system as

›

›t
(hu)1 h

›Cx

›t
1

›

›x
(hu2)1

›

›y
(huy)2 fh(y1Cy)

52
g0

2

›

›x
(h2) .

(B1)

Here, u and y are the velocities; Cx, Cy (both negative)

are the basic eddy center propagation speed projections

on the axes of the fixed coordinate system. We do not

consider the equation in the cross-coast direction be-

cause it involves an unknown force on the wall.

After integratingEq. (B1) over the rectangular contour

ABCDEA (Fig. 2) and using Stokes’ theorem, we getðð
V

	
›

›t
(hu)1h

›Cx

›t



dx dy2

þ
›V

huy dx

1

þ
›V

�
hu21

g0h2

2
2 fc

�
dy2

ðð
V
fhCy dx dy5 0,

(B2)

where c is the streamfunction, defined by ›c/›y5
2hu, ›c/›x5 hy, and V is the area enclosed by the in-

tegration contour.

We use the slowly varying approximation, introducing

the ‘‘fast’’ time scale f21
0 (associated mostly with the

basic eddy rotation) and the ‘‘slow’’ time scale (bRd)
21.

The ratio of the time scales is « [see Eq. (13)]. Nof and

Pichevin (1996, 2001) showed that, in similar problems,

the terms with time derivatives in the momentum

equations are negligible. Moreover, the second term in

the left-hand side of Eq. (B2) is zero because at least one

of the multipliers u, y, or h vanishes at each segment of

the contour ›V. The main contribution to the third term

in the left-hand side of Eq. (B2) comes from the segment

AB (i.e., cross sections of both incoming and outgoing

flows). Because both currents are approximately geo-

strophic (but not exactly geostrophic; see van Leeuwen

and de Ruijter 2009; Nof et al. 2012), (g0h2/22 fc) is

approximately b
ÐL
2L (

Ð y1L

2L c dy) dy, which isO(buhL3)5
O(df0uhL

2)5O(du2hL) [see Eq. (2)] and negligible

compared to
ÐB
A hu2 dy52

ÐL
2L hu2 dy. Finally, in the last

term of the left-hand side of Eq. (B2), we can neglect the

change of the Coriolis parameter at the scale of the area

V, assuming f ’2f0. Also, with error O(«), we assume

the basic eddy to be circular. Under this assumption, we

have
ÐÐ

Vhdx dy5V.

With all the simplifications mentioned above, Eq.

(B2) takes the form of Eq. (25).

APPENDIX C

Reasonable Interval Criterion Derivation

We want to assess the limit of validity of the theo-

retical model. This is done via the characterization of the

initial evolution of the system. We compute the expan-

sion rate of the current dL/dt and of the eddy dR/dt near

t5 0. The model is physically relevant when the eddy

expands faster than the current (dR/dt. dL/dt).

Near t5 0, we expand a, a0, and d in the Taylor series

a5 2a0i 1 a1f0t , (C1)

a0 5a0i1 b1f0t, and (C2)

d5 d0 1 d1f0t , (C3)

where we used the initial conditions given in Eqs. (31)–

(33). Even if d is a function of a0, we keep the notation in

Eq. (C3) for clarity. Using the twomain equations of the

model [Eqs. (27) and (30)], we obtain

a15
(2a0i)

4(d02 4a0i)

15pa2
0i(12 2a0i)

, (C4)

and

b15 a11
16a3

0i

15p(12a0i)
. (C5)

Also, expanding Eqs. (8) and (23), we find

L5

ffiffiffiffiffiffiffi
2

a0i

s
Rd

�
12

b1
2a0i

f0t

�
, (C6)

and

R5

ffiffiffiffiffiffiffi
2

a0i

s
Rd

�
11

b12 a1
2a0i

f0t

�
. (C7)

Therefore,

S0 5
dL

dt

dR

dt t505
b1

a12 b1
.

����
�

(C8)

Substitution of Eqs. (C4) and (C5) in Eq. (C8) yields
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S05 11
2a0i 2 d0(12a0i)

a0i(12 2a0i)
. (C9)

Moreover, we noted in section 2e(1) that a should de-

crease faster than a0. It follows from Eqs. (C1), (C2),

and (C9) that

d

dt

�
a

a0

�
t505

16f0a
2
0i

15p(12a0i)
(S02 1).

����� (C10)

Therefore, the criterion (d/dt)(a/a0)
��
t50

, 0 is satisfied

when S0 , 1, that is, again when a0i ,b0* .

APPENDIX D

Plotting of Numerical Data in Figs. 8–11

Here we clarify the calculation of numerical param-

eters for Figs. 8–11:

d Values of a and a0 are calculated from the average

vorticity over the eddy and over the upstream

currents far from the retroflection area, then fitted

with polynomials;
d R is estimated by averaging the distance from the

center to four points at the eddy boundary (north,

south, east, and west);
d L is more complicated to directly measure from the

model, so we calculate it from the maximum depth

Hn of the currents and use Rdn 5
ffiffiffiffiffiffiffiffiffiffi
g0Hn

p
/f0; Ln 5ffiffiffiffiffiffiffiffiffiffiffi

2/a0n

p
Rdn;

d Cx is calculated throughCx( j)5 [xc( j)2 xc( j2 1)]/Dt,
where xc( j) is the x coordinate of the basic eddy center

at time t;
d Cy is the only parameter we differentiate from the

polynomial for R, since discrete differentiating of R

was noisy;
d Cfr is also directly calculated from the data, using the x

coordinate of the easternmost point with maximum

depth; and
d Crf is calculated according to Eq. (43) with using data

for Cx and Cy.

As an example, Fig. D1 shows the same plot as Fig. 10 but

with incorporated data points for all the parameters and the

numerical data for L (which is convenient for plotting be-

cause a0i is not in the unreasonable interval). It is seen that

the data for a, a0, R, L, and Cfr are almost not dispersed,

but there is a strong dispersion in Cx, Cy, and Crf at the

beginning of the basic eddy development process, which is

strongly smoothed by fitting. Also, for this case, the theo-

retical and numerical data for L are in good agreement.

APPENDIX E

List of Abbreviations and Symbols

a1 Coefficient with f0t in a expansion at t5 0

AB Segment of the integration contour

AMOC Atlantic meridional overturning circulation

B Bernoulli’s integral

b1 Coefficient with f0t in a0 expansion at t5 0

Cx, Cy The basic eddy center propagation speed

projections on the axes of the fixed co-

ordinate system

Cfr Current front velocity

Crf Eddy rear front velocity

›V Contour enclosing the integration area

f Coriolis parameter

f0 Absolute value of f near the basic eddy

center

g0 Reduced gravity

h Upper-layer thickness

H Value of h at the currents’ interface (y5 0)

HYCOM Hybrid Coordinate Ocean Model

FIG. D1. As in Fig. 10, but with incorporated data points.
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L Width(s) of current(s) at the zero-order d

approximation

L1 Addition to L at the first-order d approxi-

mation (without d factor)

n Lower index meaning number of point

number in numerical dataset (forHn,Rdn,

Ln, a0n, etc.)

ODE Ordinary differential equation

PV Potential vorticity

R Radius of the basic eddy

Rd Deformation radius of currents

r Polar radius in the coordinate system con-

nected with the basic eddy center

Q Incoming current mass flux

q Outgoing current mass flux

S Ratio of the time rates of L and R change

S0 Initial value of S

Sv Sverdrup (106 m3 s21)

t Time

Dt Generation period

T Mass transport going to the eddies

u Particle velocity vector

u, y Particle velocity projections on the hori-

zontal axes

V Volume of the basic eddy

yu Basic eddy orbital velocity

(x, y) Cartesian coordinate system

a Twice the time-dependent Rossby number

of the basic eddy

a0 Time-dependent Rossby number of the

currents

ai, a0i Initial values of a and a0, respectively

a0i* Upper bound of reasonable values of a0i

a0i** Value of a0i at which S0 5 2

b Meridional gradient of the Coriolis parameter

Dr Difference in density between lower and

upper layers

Dx, Dy Horizontal grid

d Small parameter (5bL/f0)

d0 Initial value of d

d1 Coefficient with f0t in d expansion at t5 0

« Small parameter (5bRd/f0)

n Viscosity coefficient (in numerical simulations)

u Polar angle in the coordinate system con-

nected with the basic eddy center

r Upper-layer density

c Streamfunction

V Integration area around the basic eddy
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